【題目】已知F2、F1是雙曲線 =1(a>0,b>0)的上、下焦點,點F2關于漸近線的對稱點恰好落在以F1為圓心,|OF1|為半徑的圓上,則雙曲線的離心率為( )
A.3
B.
C.2
D.
【答案】C
【解析】解:由題意,F(xiàn)1(0,﹣c),F(xiàn)2(0,c), 一條漸近線方程為y= x,則F2到漸近線的距離為 =b.
設F2關于漸近線的對稱點為M,F(xiàn)2M與漸近線交于A,
∴|MF2|=2b,A為F2M的中點,
又0是F1F2的中點,∴OA∥F1M,∴∠F1MF2為直角,
∴△MF1F2為直角三角形,
∴由勾股定理得4c2=c2+4b2
∴3c2=4(c2﹣a2),∴c2=4a2 ,
∴c=2a,∴e=2.
故選C.
首先求出F2到漸近線的距離,利用F2關于漸近線的對稱點恰落在以F1為圓心,|OF1|為半徑的圓上,可得直角三角形MF1F2 , 運用勾股定理,即可求出雙曲線的離心率.
科目:高中數(shù)學 來源: 題型:
【題目】記Sn為等比數(shù)列的前n項和,已知S2=2,S3=-6.
(1)求的通項公式;
(2)求Sn,并判斷Sn+1,Sn,Sn+2是否成等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,.
(Ⅰ)證明:是等比數(shù)列;
(Ⅱ)證明:數(shù)列中的任意三項不為等差數(shù)列;
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),當x≥0時,f(x)=x2–2x+2.
(1)求函數(shù)f(x)的解析式;
(2)當x∈[m,n]時,f(x)的取值范圍為[2m,2n],試求實數(shù)m,n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形為梯形,平面,,
為中點.
(1)求證:平面平面;
(2)線段上是否存在一點,使平面?若存在,找出具體位置,并進行證明:若不存在,請分析說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設曲線C經(jīng)過伸縮變換得到曲線,設M(x,y)為上任意一點,求的最小值,并求相應的點M的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是某市年月日至日的空氣質量指數(shù)趨勢圖,某人隨機選擇年月日至月日中的某一天到達該市,并停留天.
(1)求此人到達當日空氣質量指數(shù)大于的概率;
(2)設是此人停留期間空氣質量指數(shù)小于的天數(shù),求的分布列與數(shù)學期望;
(3)由圖判斷從哪天開始連續(xù)三天的空氣質量指數(shù)方差最大?(結論不要求證明)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com