過圓C:x2+y2-2x-2y+1=0外一點(diǎn)P所做的圓的兩條切線成90°角,求線段PC的中點(diǎn)Q的軌跡方程.
考點(diǎn):軌跡方程
專題:計(jì)算題,直線與圓
分析:將圓C的方程化為標(biāo)準(zhǔn)方程,求出PC=
2
,可得線段PC的中點(diǎn)Q的軌跡是以(1,1)為圓心,
2
2
為半徑的圓,即可得出結(jié)論.
解答: 解:圓C:x2+y2-2x-2y+1=0可化為圓(x-1)2+(y-1)2=1,
∵過圓C:x2+y2-2x-2y+1=0外一點(diǎn)P所做的圓的兩條切線成90°角,
∴PC=
2
,
∴線段PC的中點(diǎn)Q的軌跡是以(1,1)為圓心,
2
2
為半徑的圓,
方程為(x-1)2+(y-1)2=
1
2
點(diǎn)評:本題考查軌跡方程,確定線段PC的中點(diǎn)Q的軌跡是以(1,1)為圓心,
2
2
為半徑的圓是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在⊙O的內(nèi)接四邊形ABCD中,∠BOD=120°,那么∠BCD是( 。
A、120°B、100°
C、80°D、60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“0<k<2”是“
x2
2
+
y2
k
=1表示橢圓”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:3x-y-3=0,求:
(1)過點(diǎn)A(3,2)且與直線l垂直的直線方程;
(2)點(diǎn)B(4,5)關(guān)于直線l的對稱點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)并銷售某高科技產(chǎn)品,已知生產(chǎn)該產(chǎn)品的固定成本是1200(單位:萬元),生產(chǎn)成本c(單位:萬元)與生產(chǎn)的產(chǎn)品件數(shù)x(單位:萬件)的立方成正比;該產(chǎn)品單價(jià)p(單位:元)的平方與生產(chǎn)的產(chǎn)品件數(shù)x(單位萬件)成反比,現(xiàn)已知生產(chǎn)該產(chǎn)品100萬件時(shí),其單價(jià)p=50元,生產(chǎn)成本c=
8
3
×104萬元,且工廠生產(chǎn)的產(chǎn)品都可以銷售完.設(shè)工廠生產(chǎn)該產(chǎn)品的利潤f(x)(萬元).(注:利潤=銷售額-固定成本-生產(chǎn)成本)
(1)求函數(shù)y=f(x)的表達(dá)式;
(2)當(dāng)生產(chǎn)該產(chǎn)品的件數(shù)x(萬件)為多少時(shí),工廠生產(chǎn)該產(chǎn)品的利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,已知AC=BC=AA1=a,∠ACB=90°,D是A1B1中點(diǎn).
(1)求證:C1D⊥平面A1B1BA;
(2)請問,當(dāng)點(diǎn)F在BB1上什么位置時(shí),會使得AB1⊥平面C1DF?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)社會調(diào)查機(jī)構(gòu)為了解某社區(qū)居民的月收入情況,從該社區(qū)成人居民中抽取10000人進(jìn)行調(diào)查,根據(jù)所得信息制作了如圖所示的樣本頻率分布直方圖.

(Ⅰ)為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進(jìn)一步調(diào)查,試求其中月收入在[2000,2500)(2000元至2500元之間)的人數(shù);
(Ⅱ)為了估計(jì)從該社區(qū)任意抽取的3個(gè)居民中恰有2人月收入在[2000,3000)的概率P,特設(shè)計(jì)如下隨機(jī)模擬的方法:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),依次用0,1,2,3,…9的前若干個(gè)數(shù)字表示月收入在[2000,3000)的居民,剩余的數(shù)字表示月收入不在[2000,3000)的居民;再以每三個(gè)隨機(jī)數(shù)為一組,代表收入的情況.假設(shè)用上述隨機(jī)模擬方法已產(chǎn)生了表中的20組隨機(jī)數(shù),請根據(jù)這批隨機(jī)數(shù)估計(jì)概率P的值.
907  966   191   925   271   932   812   458  569  683
431   257   393   027   556   488  730   113   537   989
(Ⅲ)任意抽取該社區(qū)的5位居民,用ξ表示月收入在[2000,3000)(元)的人數(shù),求ξ的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1=
2
,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1
(1)證明:BC⊥AB1;
(2)若OC=OA,求點(diǎn)B1到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)遞增等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=1,a4是a3和a7的等比中項(xiàng).
(l)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
an2+24n-25
,求數(shù)列{bn}的前100項(xiàng)和T100

查看答案和解析>>

同步練習(xí)冊答案