若△ABC的外接圓半徑為2,則
2b
sinB
+
sinC
c
=
33
4
33
4
分析:由正弦定理可得
b
sinB
c
sinC
=2r=4,由此分別求出
2b
sinB
 和
sinC
c
的值,相加即得所求.
解答:解:由正弦定理可得
b
sinB
c
sinC
=2r=4,
2b
sinB
=8,
sinC
c
=
1
4
,
2b
sinB
+
sinC
c
=8+
1
4
=
33
4

故答案為
33
4
點評:本題主要考查正弦定理的應用,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年甘肅省蘭州一中高三(上)12月月考數(shù)學試卷(理科)(解析版) 題型:解答題

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
(1)求以O為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省徐州市高三(上)質(zhì)量抽測數(shù)學試卷(解析版) 題型:解答題

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣
(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省蘇北四市高三(上)9月質(zhì)量抽測數(shù)學試卷(解析版) 題型:解答題

(選做題)本題包括A、B、C、D四小題,請選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評分,解答時應寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(不與點A,C重合),延長BD至點E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣
(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標系與參數(shù)方程]
已知曲線C的極坐標方程為ρ=4sinθ,以極點為原點,極軸為x軸的非負半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設a,b,c均為正實數(shù),求證:

查看答案和解析>>

同步練習冊答案