(1)已知tanθ=2,求tan(π-θ)的值  
(2)求值sin160°•cos160°(tan340°+
1
tan340°
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:(1)原式利用誘導(dǎo)公式化簡(jiǎn),將已知等式代入計(jì)算即可求出值;
(2)原式利用二倍角的正弦函數(shù)公式化簡(jiǎn),再利用誘導(dǎo)公式變形,最后利用萬(wàn)能公式化簡(jiǎn),約分即可得到結(jié)果.
解答: 解:(1)∵tanθ=2,
∴原式=-tanθ=-2;
(2)原式=
1
2
sin320°(tan340°+
1
tan340°

=-
1
2
sin40°(-tan20°-
1
tan20°

=
1
2
sin40°(tan20°+
1
tan20°

=
tan20°
tan220°+1
tan220°+1
tan20°

=1.
點(diǎn)評(píng):此題考查了同角三角函數(shù)間的基本關(guān)系,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1
1
22
+
1
32
+
1
42
+…+
1
992
的整數(shù)部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
2
lg
32
49
-4lg
2
+lg
245
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=3,|
b
|=4,且(
a
+2
b
)•(
a
-3
b
)=-93,則向量
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某一種物質(zhì)每100年其質(zhì)量就減少10%.設(shè)其物質(zhì)質(zhì)量為m,則過x年后,其物質(zhì)的質(zhì)量y與x的函數(shù)關(guān)系式為( 。
A、y=0.9100xm
B、y=0.9
x
100
m
C、(1-0.1 
x
100
)m
D、y=(1-0.1100x)m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=3-2logax-loga2x的單調(diào)遞增區(qū)間和該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點(diǎn)F1、F2,離心率為
1
2
,雙曲線方程為
y2
a2
-
x2
b2
=1(a>0,b>0),直線x=2與雙曲線的交點(diǎn)為A、B,且|AB|=
4
21
3

(Ⅰ)求橢圓與雙曲線的方程;
(Ⅱ)過點(diǎn)F2的直線l與橢圓交于M、N兩點(diǎn),交雙曲線與P、Q兩點(diǎn),當(dāng)△F1MN(F1為橢圓的左焦點(diǎn))的內(nèi)切圓的面積取最大值時(shí),求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(-
59
6
π)=( 。
A、-
3
2
B、
1
2
C、-
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知角A,B,C成等差數(shù)列.
(1)若b=
3
2
,求a+c的取值范圍;
(2)若
1
a
1
b
,
1
c
也成等差數(shù)列,求證:a=c.

查看答案和解析>>

同步練習(xí)冊(cè)答案