6.已知圓C經(jīng)過三個點A(4,1),B(6,-3),C(-3,0),則圓C的方程為x2+y2-2x+6y-15=0.

分析 設(shè)出圓的一般式方程,把三個點A(4,1),B(6,-3),C(-3,0)的坐標(biāo)代入,求得D、E、F的值,即可求得圓的方程.

解答 解:設(shè)圓C的一般方程為x2+y2+Dx+Ey+F=0,
因為點A(4,1),B(6,-3),C(-3,0)在所求的圓上,
所以$\left\{\begin{array}{l}{17+4D+E+F=0}\\{45+6D-3E+F=0}\\{9-3D+F=0}\end{array}\right.$,
所以D=-2,E=6,F(xiàn)=-15,
所以圓C的方程為x2+y2-2x+6y-15=0,
故答案為x2+y2-2x+6y-15=0.

點評 本題主要考查用待定系數(shù)法求圓的方程,考查學(xué)生的計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.長度為5的線段AB的兩端點A,B分別在x軸、y軸上滑動,點M在線段AB上,且AM=2,則點M的軌跡方程是$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.空間直角坐標(biāo)系中,點A(1,0,1)關(guān)于x軸對稱的點為A',點B(2,1,-1),則$\frac{{|{AB}|}}{{|{A'B}|}}$=(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義有限數(shù)集A中的最大元素與最小元素之差為A的“長度”,如:集合A1={1,2,4}的“長度”為3,集合A2={3}的“長度”為0.已知集合U={1,2,3,4,5,6},則U的所有非空子集的“長度”之和為201.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,在四邊形ABCD中,AB=AD=CD=1,BD=$\sqrt{2}$,BD⊥CD.將四邊形ABCD沿對角線BD折成四面體A'-BCD,使平面A'BD⊥平面BCD,則下列結(jié)論正確的是( 。
A.A'C⊥BDB.四面體 A'-BCD的體積為 $\frac{1}{3}$
C.CA'與平面 A'BD所成的角為 30°D.∠BA'C=90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題是真命題的是(  )
A.若m∥α,m∥β,則 α∥βB.若m∥α,α∥β,則 m∥β
C.若m?α,m⊥β,則 α⊥βD.若m?α,α⊥β,則 m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,a:b:c=3:2;4,則cosB=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.$\frac{7}{8}$D.-$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知不等式(ax+3)(x2-b)≤0對任意x∈(-∞,0)恒成立,其中a,b是整數(shù),則a+b的取值的集合為   {4,10}   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.“m<0”是“$\frac{{x}^{2}}{m}$-$\frac{{y}^{2}}{m-1}$=1表示的曲線是雙曲線”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案