已知函數(shù)f(2x+1)=4x2,則f(5)=________.

16
分析:令t=2x+1,則 x=,故有f(t)=4 .再把t=5代入求得f(5)的值.
解答:已知函數(shù)f(2x+1)=4x2,令t=2x+1,則 x=,故有f(t)=4
故f(5)=4=16,
故答案為 16.
點評:本題主要考查利用換元法求函數(shù)的解析式、求函數(shù)的值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(2x-1)=x2,(x∈R),求f(x-1)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1
(x∈[2,6])
,求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•開封一模)已知函數(shù)f(x)=
2x-1,(x≤0)
f(x-1)+1,(x>0)
,把函數(shù)g(x)=f(x)-x
的零點按從小到大的順序排列成一個數(shù)列,則該數(shù)列的前n項的和為Sn,則S10=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1

(1)用函數(shù)的單調性的定義證明f(x)在(1,+∞)上是減函數(shù).
(2)求函數(shù)f(x)在[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x-1  (x≥0)
(
1
3
)x    (x<0)
,則f(f(-2))=
17
17

查看答案和解析>>

同步練習冊答案