【題目】設(shè),是兩條不重合的直線,,是兩個(gè)不重合的平面,下列說(shuō)法正確的是( )
A. 若,,,則
B. 若,,則
C. 若,,則
D. 若,,,則
【答案】B
【解析】
根據(jù)線、面的位置關(guān)系有關(guān)的概念和定理,對(duì)四個(gè)選項(xiàng)逐一分析,由此確定正確選項(xiàng).
對(duì)于A選項(xiàng),兩個(gè)平面平行,則一個(gè)平面內(nèi)的直線,和另一個(gè)平面內(nèi)的直線可能異面,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),如果兩個(gè)平面平行,則一個(gè)平面的的直線和另一個(gè)平面平行,故B選項(xiàng)正確.對(duì)于C選項(xiàng),兩個(gè)平面垂直,則一個(gè)平面內(nèi)的直線和另一個(gè)平面不一定垂直,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),根據(jù)面面垂直的性質(zhì)定理可知:如果兩個(gè)平面垂直,則在一個(gè)平面內(nèi),垂直于交線的直線和另一個(gè)平面垂直.但是D選項(xiàng)中直線不一定在這兩個(gè)垂直的平面內(nèi),所以D選線錯(cuò)誤.綜上所述,本小題選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市春節(jié)大酬賓,購(gòu)物滿100元可參加一次抽獎(jiǎng)活動(dòng),規(guī)則如下:顧客將一個(gè)半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器正上方的人口處,小球在自由落下的過(guò)程中,將3次遇到黑色障礙物,最后落入A袋或B袋中,顧客相應(yīng)獲得袋子里的獎(jiǎng)品.已知小球每次遇到黑色障礙物時(shí),向左向右下落的概率都為.若活動(dòng)當(dāng)天小明在該超市購(gòu)物消費(fèi)108元,按照活動(dòng)規(guī)則,他可參加一次抽獎(jiǎng),則小明獲得A袋中的獎(jiǎng)品的概率為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)F(1,0),O為坐標(biāo)原點(diǎn),A,B是拋物線C上異于 O的兩點(diǎn).
(1)求拋物線C的方程;
(2)若直線AB過(guò)點(diǎn)(8,0),求證:直線OA,OB的斜率之積為定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(3-x)ex,g(x)=x+a(a∈R)(e是自然對(duì)數(shù)的底數(shù),e≈2.718…).
(1)求函數(shù)f(x)的極值;
(2)若函數(shù)y=f(x)g(x)在區(qū)間[1,2]上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)h(x)=在區(qū)間(0,+∞)上既存在極大值又存在極小值,并且函數(shù)h(x)的極大值小于整數(shù)b,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為2的正方形沿對(duì)角線折疊,使得平面平面,又平面.
(1)若,求直線與直線所成的角;
(2)若二面角的大小為,求的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn),且其離心率為,過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別相交于,兩點(diǎn).
(1)求橢圓的方程;
(2)是否存在圓心在原點(diǎn)的定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓過(guò)點(diǎn) ,兩個(gè)焦點(diǎn)為(,0),(,0).
(1)求橢圓的方程;
(2)求以點(diǎn) 為中點(diǎn)的弦所在的直線方程,并求此時(shí)的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒(méi)有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求的分布列及的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com