如圖:已知圓O:和定點A(2,1),由圓O外一點P(a,b)向圓O引切線PQ,切點為Q,且滿足|PQ|=|PA|,
(1)求實數(shù)a,b間滿足的等量關(guān)系式;
(2)求線段PQ長的最小。
解:(1)連接OP,
因為Q為切點,∴PQ⊥OQ,
由勾股定理有,
又由已知|PQ|=|PA|,故|PQ|2=|PA|2
,
化簡,得2a+b-3=0。
(2)由2a+b-3=0,得b=-2a+3,
,
故當時,線段PQ長取最小值。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知F1、F2分別為橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)
的上、下焦點,其中F1也是拋物線C2x2=4y的焦點,點M是C1與C2在第二象限的交點,且|MF1|=
5
3

(1)求橢圓C1的方程;
(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足:
AP
=-λ
PB
,
AQ
QB
(λ≠0且λ≠±1),
求證:點Q總在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•虹口區(qū)一模)已知圓O:x2+y2=4.
(1)直線l1
3
x+y-2
3
=0
與圓O相交于A、B兩點,求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個動點,點M關(guān)于原點的對稱點為M1,點M關(guān)于x軸的對稱點為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問m•n是否為定值?若是求出該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:湖北省模擬題 題型:解答題

如圖,已知橢圓(a> b>0)和圓O:x2+y2=b2,過橢圓上一點P引圓O的兩條切線,切點分別為A、B。
(1)①若圓O過橢圓的兩個焦點,求橢圓的離心率e;
②若橢圓上存在點P,使得∠APB=90°,求橢圓離心率e 的取值范圍;
(2)設(shè)直線AB與x軸、y軸分別交于點M、N,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省高考數(shù)學預(yù)測試卷(12)(解析版) 題型:解答題

如圖,已知F1、F2分別為橢圓的上、下焦點,其中F1也是拋物線的焦點,點M是C1與C2在第二象限的交點,且
(1)求橢圓C1的方程;
(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足:(λ≠0且λ≠±1),
求證:點Q總在某條定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年山東省高考數(shù)學預(yù)測試卷(07)(解析版) 題型:解答題

如圖,已知F1、F2分別為橢圓的上、下焦點,其中F1也是拋物線的焦點,點M是C1與C2在第二象限的交點,且
(1)求橢圓C1的方程;
(2)已知點P(1,3)和圓O:x2+y2=b2,過點P的動直線l與圓O相交于不同的兩點A,B,在線段AB上取一點Q,滿足:,(λ≠0且λ≠±1),
求證:點Q總在某條定直線上.

查看答案和解析>>

同步練習冊答案