【題目】已知二面角P﹣AB﹣C的大小為120°,且∠PAB=∠ABC=90°,AB=AP,AB+BC=6.若點P,A,B,C都在同一個球面上,則該球的表面積的最小值為( )
A.45πB.C.D.
【答案】B
【解析】
設(shè)AB=x,(0<x<6),則,由題意知三棱錐外接球的球心是過△PAB和△ABC的外心E,H,且分別垂直這兩個三角形所在平面的垂線的交點O,OB為三棱錐外接球半徑,取AB的中點為G,推導(dǎo)出△EGH的外接圓直徑,從而,當(dāng)x時,OB2的最小值為,由此能求出該球的表面積的最小值.
設(shè)AB=x,(0<x<6),則,
由題意知三棱錐外接球的球心是過△PAB和△ABC的外心E,H,
且分別垂直這兩個三角形所在平面的垂線的交點O,
OB為三棱錐外接球半徑,取AB的中點為G,如圖,
由條件知
在△EGH中,由余弦定理可得
∴△EGH的外接圓直徑,
當(dāng)時,OB2的最小值為,
∴該球的表面積的最小值為.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),實數(shù).
(1)討論函數(shù)在區(qū)間上的單調(diào)性;
(2)若存在,使得關(guān)于x的不等式成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l: 橢圓C: ,分別為橢圓的左右焦點.
(1)當(dāng)直線l過右焦點時,求C的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C交于A,B兩點,O為坐標(biāo)原點,若∠AOB是鈍角,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】作家馬伯庸小說《長安十二時辰》中,靖安司通過長安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某區(qū)在2019年教師招聘考試中,參加、、、四個崗位的應(yīng)聘人數(shù)、錄用人數(shù)和錄用比例(精確到1%)如下:
崗位 | 男性應(yīng)聘人數(shù) | 男性錄用人數(shù) | 男性錄用比例 | 女性應(yīng)聘人數(shù) | 女性錄用人數(shù) | 女性錄用比例 |
269 | 167 | 62% | 40 | 24 | 60% | |
217 | 69 | 32% | 386 | 121 | 31% | |
44 | 26 | 59% | 38 | 22 | 58% | |
3 | 2 | 67% | 3 | 2 | 67% | |
總計 | 533 | 264 | 50% | 467 | 169 | 36% |
(1)從表中所有應(yīng)聘人員中隨機(jī)抽取1人,試估計此人被錄用的概率;
(2)將應(yīng)聘崗位的男性教師記為,女性教師記為,現(xiàn)從應(yīng)聘崗位的6人中隨機(jī)抽取2人.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)為事件“抽取的2人性別不同”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),以坐標(biāo)原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)求C1的極坐標(biāo)方程;
(2)若C1與曲線C2:ρ=2sinθ交于A,B兩點,求|OA||OB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,焦距為.
(1)求的方程;
(2)若斜率為的直線與橢圓交于,兩點(點,均在第一象限),為坐標(biāo)原點.
①證明:直線的斜率依次成等比數(shù)列.
②若與關(guān)于軸對稱,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三梭柱ABC-A1B1C1中,AC=BC,E,F分別為AB,A1B1的中點.
(1)求證:AF∥平面B1CE;
(2)若A1B1⊥,求證:平面B1CE⊥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說法:
①圖(2)對應(yīng)的方案是:提高票價,并提高成本;
②圖(2)對應(yīng)的方案是:保持票價不變,并降低成本;
③圖(3)對應(yīng)的方案是:提高票價,并保持成本不變;
④圖(3)對應(yīng)的方案是:提高票價,并降低成本.
其中,正確的說法是____________.(填寫所有正確說法的編號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com