(本題滿分15分)設(shè)橢圓的離心率右焦點到直線的距離,為坐標(biāo)原點。

(Ⅰ)求橢圓的方程;

(Ⅱ)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直線的距離為定值,并求弦長度的最小值.

 

【答案】

(Ⅰ);(Ⅱ)弦AB的長度的最小值是

【解析】本試題主要是考查了直線與橢圓的位置關(guān)系的運用以及橢圓方程的求解,韋達定理的綜合運用。

(1)運用橢圓幾何性質(zhì)和點到直線的距離公式可知,a,b,c的關(guān)系式得到橢圓的方程。

(2)設(shè)出直線與橢圓聯(lián)立方程組,然后借助于韋達定理和點到直線的距離,表示,然后利用,得到弦AB的長度的最小值是

解:(Ⅰ)由, ………2分

由右焦點到直線的距離得:………5分

   所以橢圓C的方程為……..6分

(Ⅱ)設(shè)當(dāng)直線AB的斜率存在時,設(shè)為,與橢圓

聯(lián)立消去得:

由△>0得,    ………8分

 

,,即

整理得                   ………10分

所以O(shè)到直線AB的距離   ………12

當(dāng)直線AB的斜率不存在時易得,即命題得證;………13分

,

即弦AB的長度的最小值是………15分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分15分)設(shè)函數(shù)是奇函數(shù),(1)求的值;(2)若,試求不等式的解集;(3)若,且上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省招生適應(yīng)性考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(Ⅰ)若函數(shù)上單調(diào)遞增,在上單調(diào)遞減,求實數(shù)的最大值;

(Ⅱ)若對任意的,都成立,求實數(shù)的取值范圍.

注:為自然對數(shù)的底數(shù).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)設(shè),函數(shù).

(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)若時,不等式恒成立,實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市高三上學(xué)期第三次統(tǒng)練文科數(shù)學(xué) 題型:解答題

(本題滿分15分)設(shè)函數(shù)

(1)當(dāng)時,取得極值,求的值;

(2)若內(nèi)為增函數(shù),求的取值范圍;

(3)設(shè),是否存在正實數(shù),使得對任意,都有成立?

若存在,求實數(shù)的取值范圍;若不存在,請說明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省高三年級隨堂練習(xí)數(shù)學(xué)試卷 題型:解答題

(本題滿分15分)

設(shè)函數(shù).

(Ⅰ)當(dāng)時,解不等式:;

(Ⅱ)求函數(shù)的最小值;

(Ⅲ)求函數(shù)的單調(diào)遞增區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊答案