13.已知等比數(shù)列{an}中,a2+a3=24.a(chǎn)4=54.公比q>0,求:
(1)首項a1和公比q;
(2)該數(shù)列的前6項的和S6的值.

分析 (1)利用等比數(shù)列的通項公式即可得出;
(2)利用等比數(shù)列的求和公式即可得出.

解答 解:(1)∵a2+a3=24.a(chǎn)4=54.∴${a}_{1}(q+{q}^{2})$=24,${a}_{1}{q}^{3}$=54,公比q>0,
聯(lián)立解得:a1=2,q=3.
(2)該數(shù)列的前6項的和S6=$\frac{2×({3}^{6}-1)}{3-1}$=36-1.

點評 本題考查了等比數(shù)列的通項公式及其求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.設m為正整數(shù),(x+y)2m展開式的系數(shù)的最大值為a,(2x-y)2m+1展開式的二項式系數(shù)的最大值為b,若17a=9b,則m=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知a>0,b≥0,c≥0且$\left\{\begin{array}{l}{b+2c≥2a}\\{b+4c≤4a}\\{b-c≤2a}\end{array}\right.$,則$\frac{c+a}{b+a}$的取值范圍是[$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若集合P={y|y≥0},且P⊆Q,則集合Q不可能是  ( 。
A.{y|y=x2-1}B.{y|y=2x}C.{y|y=lgx}D.{y|y=x2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.實數(shù)x、y滿足$\left\{\begin{array}{l}{x+y≥3}\\{x≤2}\\{y≤2}\end{array}\right.$ 則函數(shù)z=$\frac{x+y}{3x-y}$的值域為[$\frac{3}{5},3$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設數(shù)列{an}的前n項和為Sn,Sn=2an-2,(n≥1,n∈N),數(shù)列{bn}中,b1=1,b2=3,2bn+1=bn+bn+2,(n≥1,n∈N)
(1)求an和bn;
(2)令Tn=$\frac{_{1}}{{a}_{1}}$+$\frac{_{2}}{{a}_{2}}$+…+$\frac{_{n}}{{a}_{n}}$,是否存在正整數(shù)M使得Tn<M對一切正整數(shù)n都成立?若存在,求出M的最小值;若不存在,請說明理由.
(3)令cn=$\frac{{a}_{n}-1}{{a}_{n+1}-1}$,證明:$\frac{n}{2}$-$\frac{1}{3}$<c1+c2+…+cn<$\frac{n}{2}$,(n≥1,n∈N)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}是公差d≠0的等差數(shù)列,a2、a6、a22成等比數(shù)列,a4+a6=26.
(1)求數(shù)列{an}的通項公式:
(2)令$_{n}{=2}^{n-1}{•a}_{n}$求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2-(2a+1)x.
(1)討論函數(shù)g(x)的單調性;
(2)若$a<\frac{1}{2}$時,函數(shù)g(x)在(0,e]上的最大值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)$f(x)=lnx+\frac{a}{x}-1$,其中a為參數(shù),
(Ⅰ)若a=1,求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)當x∈[1,e]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

同步練習冊答案