(本題滿分13分) 如圖,是離心率為
的橢圓,
:
(
)的左、右焦點,直線
:
將線段
分成兩段,其長度之比為1 : 3.設(shè)
是
上的兩個動點,線段
的中點
在直線
上,線段
的中垂線與
交于
兩點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點,使以
為直徑的圓經(jīng)過點
,若存在,求出
點坐標(biāo),若不存在,請說明理由.
(Ⅰ) (Ⅱ) 存在兩點
符合條件,坐標(biāo)為
,理由見解析
【解析】
試題分析:(Ⅰ) 設(shè),則
=
,所以
=1.
因為離心率e=,所以
=
.
所以橢圓C的方程為.
……5分
(Ⅱ) 當(dāng)直線垂直于
軸時,直線
方程為
=-
,
此時(
,0)、
(
,0)
,
.不合題意;
……7分
當(dāng)直線不垂直于
軸時,設(shè)存在點
(-
,
) (
≠0),直線
的斜率為
,
.
由 得
=0,則
,
故.此時,直線
斜率為
,
的直線方程為
.
即.
聯(lián)立 消去
,整理得
.
所以,
.
……10分
由題意0,于是
=0.
因為在橢圓內(nèi),
符合條件;
綜上,存在兩點符合條件,坐標(biāo)為
.
……13分
考點:本小題主要考查橢圓標(biāo)準(zhǔn)方程的求法和直線與橢圓位置關(guān)系的判斷和應(yīng)用以及向量數(shù)量積的應(yīng)用,考查學(xué)生分析問題、解決問題的能力和運算求解能力.
點評:設(shè)直線方程時,要考慮到直線方程斜率是否存在;對于探究性問題,可以先假設(shè)存在,再進(jìn)行計算,如果能求出來,就說明存在,如果求不出來或者得出矛盾,則說明不存在.
科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)
已知集合,
,
.
(1) 求,
; (2) 若
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省寧波萬里國際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)的三個內(nèi)角
依次成等差數(shù)列.
(Ⅰ)若,試判斷
的形狀;
(Ⅱ)若為鈍角三角形,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分13分)
在銳角中,
,
,
分別為內(nèi)角
,
,
所對的邊,且滿足
.
(Ⅰ)求角的大。
(Ⅱ)若,且
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市09-10學(xué)年高二下學(xué)期5月月考(數(shù)學(xué)文) 題型:解答題
(本題滿分13分)在展開式中,求:
(1)第6項; (2) 第3項的系數(shù); (3)常數(shù)項。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(一級學(xué)校) 題型:解答題
(本題滿分13分)
如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FE,AB
AD,AF=AB=BC=FE=
AD.
(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點M的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com