【題目】如圖甲是某商店2018年(按360天計(jì)算)的日盈利額(單位:萬(wàn)元)的統(tǒng)計(jì)圖.

(1)請(qǐng)計(jì)算出該商店2018年日盈利額的平均值(精確到0.1,單位:萬(wàn)元):

(2)為了刺激消費(fèi)者,該商店于2019年1月舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客凡購(gòu)買(mǎi)一定金額的高品后均可參加抽獎(jiǎng).隨著抽獎(jiǎng)活動(dòng)的有效開(kāi)展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來(lái)越多,該商店對(duì)前5天抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì)如下表:(表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù))

1

2

3

4

5

50

60

70

80

100

經(jīng)過(guò)進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)具有線(xiàn)性相關(guān)關(guān)系.

(ⅰ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線(xiàn)性回歸方程

(ⅱ)該商店采取轉(zhuǎn)盤(pán)方式進(jìn)行抽獎(jiǎng)(如圖乙),其中轉(zhuǎn)盤(pán)是個(gè)八等分的圓.每位顧客最多兩次抽獎(jiǎng)機(jī)會(huì),若第一次抽到獎(jiǎng),則抽獎(jiǎng)終止,若第一次未抽到獎(jiǎng),則再提供一次抽獎(jiǎng)機(jī)會(huì).抽到一等獎(jiǎng)的獎(jiǎng)品價(jià)值128元,抽到二等獎(jiǎng)的獎(jiǎng)品價(jià)值32元.若該商店此次抽獎(jiǎng)活動(dòng)持續(xù)7天,試估計(jì)該商店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)共送出價(jià)值為多少元的獎(jiǎng)品(精確到0.1,單位:萬(wàn)元)?

(3)用(1)中的2018年日盈利額的平均值去估計(jì)當(dāng)月(共31天)每天的日盈利額.若商店每天的固定支出約為1000元,促銷(xiāo)活動(dòng)日的日盈利額比平常增加20%,則該商店當(dāng)月的純利潤(rùn)約為多少萬(wàn)元?(精確到0.1,純利潤(rùn)=盈利額-固定支出-抽獎(jiǎng)總獎(jiǎng)金數(shù))

參考公式及數(shù)據(jù):,,.

【答案】(1)1.3(萬(wàn)元);(2)(。 ,(ⅱ)2.3萬(wàn)元;(3)36.7萬(wàn)元

【解析】

1)由總天數(shù)360列方程,求出統(tǒng)計(jì)圖中的值,然后計(jì)算日盈利額的平均值即可;(2)(。┧愠,結(jié)合參考公式和數(shù)據(jù),即可求出線(xiàn)性回歸方程;(ⅱ)由轉(zhuǎn)盤(pán)分布可知,顧客每次抽到一二三等獎(jiǎng)的概率均為,無(wú)獎(jiǎng)的概率為,設(shè)一位參加抽獎(jiǎng)的顧客獲得的獎(jiǎng)品價(jià)值元,則的取值可能為128、32、0,然后分別求出其概率,列出分布列求出方程,由線(xiàn)性回歸方程估算出第6、7兩天的人數(shù),然后加上前5天人數(shù)得到抽獎(jiǎng)總?cè)藬?shù),再乘以每位顧客中獎(jiǎng)獎(jiǎng)品價(jià)值的期望值即可;(3)由(1)中的日盈利額的平均值乘以天數(shù)31,再加上促銷(xiāo)日額外多出的盈利額即為總盈利額,再減去固定總支出,以及(2)中得出的抽獎(jiǎng)總獎(jiǎng)金數(shù)即可.

(1)由題意可知:,解得.

所以日盈利額的平均值為

(萬(wàn)元).

(2)(。

,

,

所以 .

(ⅱ)由轉(zhuǎn)盤(pán)分布可知,顧客每次抽到一二三等獎(jiǎng)的概率均為,無(wú)獎(jiǎng)的概率為

設(shè)一位參加抽獎(jiǎng)的顧客獲得的獎(jiǎng)品價(jià)值元,則的分布列為:

,,,

128

32

0

(元)

由于關(guān)于的線(xiàn)性回歸方程為 ,得時(shí)時(shí),則此次活動(dòng)參加抽獎(jiǎng)的總?cè)藬?shù)約為

該商店在此次抽獎(jiǎng)活動(dòng)結(jié)束時(shí)共送出的獎(jiǎng)品總價(jià)值為萬(wàn)元

(3)當(dāng)月的純利潤(rùn)約為(萬(wàn)元),故該商店當(dāng)月的純利潤(rùn)約為36.7萬(wàn)元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門(mén)擬在隧道頂部安裝通風(fēng)設(shè)備(視作點(diǎn)),為了固定該設(shè)備,計(jì)劃除從隧道最高點(diǎn)處使用鋼管垂直向下吊裝以外,再在兩側(cè)自兩點(diǎn)分別使用鋼管支撐.已知道路寬,設(shè)備要求安裝在半圓內(nèi)部,所使用的鋼管總長(zhǎng)度為.

(1)①設(shè),將表示為關(guān)于的函數(shù);

②設(shè),將表示為關(guān)于的函數(shù);

(2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,說(shuō)明如何設(shè)計(jì),所用的鋼管材料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的一個(gè)頂點(diǎn)為拋物線(xiàn)的頂點(diǎn), 兩點(diǎn)都在拋物線(xiàn)上,且.

(1)求證:直線(xiàn)必過(guò)一定點(diǎn);

(2)求證: 面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處切線(xiàn)的方程;

(2)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(3)若,證明對(duì)任意,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]:在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為t為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為,已知直線(xiàn)與曲線(xiàn)C交于不同的兩點(diǎn)AB

(1)求直線(xiàn)的普通方程和曲線(xiàn)C的直角坐標(biāo)方程;

(2)設(shè)P(12),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:

①在線(xiàn)性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;

②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;

③在回歸直線(xiàn)方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;

④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線(xiàn)恒過(guò)樣本點(diǎn)的中心,且至少過(guò)一個(gè)樣本點(diǎn);

⑥若的觀(guān)測(cè)值滿(mǎn)足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病;

⑦從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤. 其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y118,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2(注:利潤(rùn)與投資金額單位:萬(wàn)元).

(1)該公司已有100萬(wàn)元資金,并全部投入AB兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫(xiě)出定義域;

(2)在(1)的條件下,試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:.

(1)討論的單調(diào)性;

(2)當(dāng),時(shí),證明:

(i)在點(diǎn)處的切線(xiàn)與的圖像至少有兩個(gè)不同的公共點(diǎn);

(ii)若另有公共點(diǎn)為,其中,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為.已知是拋物線(xiàn)的焦點(diǎn), 到拋物線(xiàn)的準(zhǔn)線(xiàn)的距離為.

(I)求橢圓的方程和拋物線(xiàn)的方程;

(II)設(shè)上兩點(diǎn), 關(guān)于軸對(duì)稱(chēng),直線(xiàn)與橢圓相交于點(diǎn)異于點(diǎn)),直線(xiàn)軸相交于點(diǎn).若的面積為,求直線(xiàn)的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案