已知函數(shù) ,函數(shù),若存在、使得成立,則實(shí)數(shù)的取值范圍是

A.         B.         C.        D.

 

【答案】

A

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cos(ωx+
π
3
)+cos(ωx-
π
3
)-1(ω>0,x∈R)
,且函數(shù)f(x)的最小正周期為π
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,若f(B)=1,
BA
BC
=
3
3
2
,且a+c=4,求邊長b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log
1
2
[x2-2(2a-1)x+8](a∈R)
(1)若使函數(shù)f(x)在[a,+∞﹚上為減函數(shù),求a的取值范圍;
(2)當(dāng)a=
3
4
時(shí),求y=f(sin(2x-
π
3
)
),x∈[
π
12
,
π
2
]的值域.
(3)若關(guān)于x的方程f(x)=-1+log
1
2
(x+3)
在[1,3]上有且只有一解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=kx,(k≠0)且滿足f(x+1)•f(x)=x2+x,函數(shù)g(x)=ax,(a>0且a≠1).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若函數(shù)f(x)為R上的增函數(shù),h(x)=
f(x)+1
f(x)-1
(f(x)≠1)
,問是否存在實(shí)數(shù)m使得h(x)的定義域和值域都為[m,m+1]?若存在,求出m的值;若不存在,請說明理由;
(Ⅲ)已知關(guān)于x的方程g(2x+1)=f(x+1)•f(x)恰有一實(shí)數(shù)解為x0,且x0∈(
1
4
1
2
)
求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
a
x
(a>0),設(shè)F(x)=f(x)+g(x)

(I)求函數(shù)F(x)的單調(diào)區(qū)間;
(II)若以函數(shù)y=F(x)(x∈(0,3])的圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≤
1
3
恒成立,求實(shí)數(shù)a的最小值;
(III)是否存在實(shí)數(shù)m,使得函數(shù)y=g(
2a
x2+1
)+m-1
的圖象與函數(shù)y=f(1+x2)的圖象恰有四個(gè)不同的交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
,其中ω>0,f(x)的最小正周期為4π.
(Ⅰ)若函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=π對稱,求y=g(x)圖象的對稱中心;
(Ⅱ)若在△ABC中,角A,B,C的對邊分別是a,b,c,且(2a-c)cosB=b•cosC,求f(A)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案