設(shè)隨機變量ξ服從正態(tài)分布N(60,82),則隨機變量ξ落在區(qū)間(60,76)的概率是( 。
A、0.3413
B、0.4772
C、0.4987
D、0.6826
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:利用服從正態(tài)分布N(μ,σ2)的隨機變量在區(qū)間(μ-2σ,μ+2σ)內(nèi)取值的概率分別為95.4%,即可得出結(jié)論.
解答: 解:∵服從正態(tài)分布N(μ,σ2)的隨機變量在區(qū)間(μ-2σ,μ+2σ)內(nèi)取值的概率分別為95.4%,隨機變量ξ服從正態(tài)分布N(60,82),
∴隨機變量ξ落在區(qū)間(60-16,60+16)的概率是95.4%,
∴隨機變量ξ落在區(qū)間(60,76)的概率是
1
2
×95.4%=0.4772,
故選:B.
點評:本題考查正態(tài)分布曲線的特點及曲線所表示的意義,考查曲線的變化特點,本題是一個基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解絕對值方程:
(1)|2x-1|+|x-2|=|x+1|;
(2)3(|x|-1)=
|x|
5
+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=-xn+cx,f(2)=-14,f(4)=-252,若函數(shù)y=log
2
2
f(x)的定義域為(0,1),試判斷其在區(qū)間(
32
2
,1)上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
x
x+2
的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)正數(shù)x、y、z滿足2x+2y+z=1.
(1)求3xy+yz+zx的最大值;
(2)證明:
3
1+xy
+
1
1+yz
+
1
1+zx
125
26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在等差數(shù)列{an}中,對任意正整數(shù)n,都有an>an+1,且a2,a8是方程x2-12x+m=0的兩根,且前15項的和為5m,則數(shù)列{an}的公差是( 。
A、-2或-3B、2或3
C、-2D、-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

電燈泡使用時數(shù)在1000小時以上的概率為0.8,則三個燈泡在1000小時以后最多有一個壞了的概率是( 。
A、0.401
B、0.104
C、0.410
D、0.014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是圓x2+y2=4上一動點,A(
1
2
1
2
),線段AP的垂直平分線交OP于點Q,其中O是原點,求QA的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線C:y2=4x的焦點為F,P1、P2、P3是拋物線C上的不同三點,且|FP1|、|FP2|、|FP3|成等差數(shù)列,公差d≠0,若點P2的橫坐標為3,則線段P1P3的垂直平分線與x軸交點的橫坐標是( 。
A、3B、5
C、6D、不確定,與d的值有關(guān)

查看答案和解析>>

同步練習冊答案