如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,ABCDAB4,BCCD2,AA1,AB的中點.

()證明:直線EE1∥平面FCC1;

()求二面角BFC1C的弦值.

答案:
解析:


提示:

本題主要考查直棱柱的概念、線面位置關(guān)系的判定和二面角的計算.考查空間想象能力和推理運算能力,以及應(yīng)用向量知識解答問題的能力.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點,F(xiàn)為AB的中點.證明:
(1)EE1∥平面FCC1
(2)平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1分別是棱AD,AA1的中點.
(1)設(shè)F是棱AB的中點,證明:直線EE1∥平面FCC1
(2)證明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

15、如圖,在直四棱柱ABCD-A1B1C1D1中,A1C1⊥B1D1,E,F(xiàn)分別是AB,BC的中點.
(1)求證:EF∥平面A1BC1;
(2)求證:平面D1DBB1⊥平面A1BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直四棱柱ABCD-A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E,E1,F(xiàn)分別是棱AD,AA1,AB的中點.
(1)證明:直線EE1∥平面FCC1;
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•撫州模擬)如圖,在直四棱柱ABCD-A1B1C1D1中,AB=BC,∠ABC=60°,BB1=BC=2,M為BC中點,點N在CC1上.
(1)試確定點N的位置,使AB1⊥MN;
(2)當AB1⊥MN時,求二面角M-AB1-N的正切值.

查看答案和解析>>

同步練習(xí)冊答案