【題目】在直角坐標系中,圓的參數(shù)方程為 (為參數(shù)),圓與圓外切于原點,且兩圓圓心的距離,以坐標原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求圓和圓的極坐標方程;

(2)過點的直線與圓異于點的交點分別為點,與圓異于點的交點分別為點,且,求四邊形面積的最大值.

【答案】(1)圓的極坐標方程為,圓的極坐標方程.(2)9.

【解析】試題分析:(1)根據(jù)極坐標和普通方程的轉化公式得到極坐標方程;(2),根據(jù)極徑的定義得到,從而得到最值.

解析:

(1)由圓的參數(shù)方程為參數(shù)),

所以,

又因為圓與圓外切于原點,且兩圓圓心的距離,

可得 ,則圓的方程為

所以由得圓的極坐標方程為,

的極坐標方程為

(2)由已知設,

則由 可得,

由(1)得,

所以

所以當時,即時, 有最大值9

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場銷售價與上市時間的關系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關系式寫出圖(2)表示的種植成本與時間的函數(shù)關系式

(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖:某快遞小哥從地出發(fā),沿小路以平均時速20公里小時,送快件到處,已知(公里),,是等腰三角形,

(1) 試問,快遞小哥能否在50分鐘內將快件送到處?

(2)快遞小哥出發(fā)15分鐘后,快遞公司發(fā)現(xiàn)快件有重大問題,由于通訊不暢,公司只能派車沿大路追趕,若汽車平均時速60公里小時,問,汽車能否先到達處?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.

求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);

估計用電量落在中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當時,,現(xiàn)已畫出函數(shù)在y軸左側的圖象,如圖所示,請根據(jù)圖象.

1)將函數(shù)的圖象補充完整,并寫出函數(shù)的遞增區(qū)間;

2)寫出函數(shù)的解析式;

3)若函數(shù),求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[10.5,14.5)  2  [14.5,18.5)  4 [18.5,22.5)  9 [22.5,26.5)  18

[26.5,30.5)  11  [30.5,34.5)  12 [34.5,38.5)  8  [38.5,42.5)  2

根據(jù)樣本的頻率分布估計,數(shù)據(jù)落在[30.5,42.5)內的概率約是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f (x)=(-6≤x≤10)的所有零點之和為____________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

(1)求函數(shù)的單調區(qū)間;

(2)若函數(shù)有兩個零點,;

(i)求滿足條件的最小正整數(shù)的值.

(ii)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓:的離心率為,且經過點.

1)求橢圓的方程;

2)直線與橢圓相交于,兩點,若,求為坐標原點)面積的最大值及此時直線的方程.

查看答案和解析>>

同步練習冊答案