已知函數(shù)y=1-
1
x-1
,用圖象變換法作出其函數(shù)圖象.
(1)通過觀察圖象,說明與函數(shù)y=-
1
x
圖象的關(guān)系;
(2)試探求f(1+x)+f(1-x)是否為定值,并給出證明.
考點:函數(shù)的圖象與圖象變化,函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)先畫函數(shù)的圖象,圖象的形狀與函數(shù)y=
-1
x
的圖象一致,再利用函數(shù)平移的知識解釋;
(2)觀察函數(shù)的圖象,圖象關(guān)于A(1,1)對稱,則f(1+x)+f(1-x)=2,代入f(x)的表達(dá)式證明.
解答: 解:(1)函數(shù)y=1-
1
x-1
的圖象:

函數(shù)y=1-
1
x-1
=
-1
x-1
+1
,可由函數(shù)y=
-1
x
先向右平移1個單位,再向上平移1 個單位得到.
(2)是定值,f(1+x)+f(1-x)=2
證明:f(1+x)+f(1-x)=1-
1
1+x-1
+1-
1
1-x-1
=2-
1
x
+
1
x
=2
點評:本題考查函數(shù)的性質(zhì),考查函數(shù)圖象的作法,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直接坐標(biāo)系xOy中,O為坐標(biāo)原點,以O(shè)為圓心的圓與直線x-
3
y-4=0相切.
(Ⅰ)求圓O的方程;
(Ⅱ)若直線l:y=kx+3與圓C交于A,B兩點,在圓C上是否存在一點M,使得
OM
=
OA
+
OB
,若存在,求出此時直線l的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-ax+3x+1在(0,1)內(nèi)存在一個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖(1),正三角形ABC 的邊長為2a,CD是AB邊上的高,E、F分別是AC和BC邊上的點,且滿足
CE
CA
=
CF
CB
=k,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).
(Ⅰ) 證明AB∥平面DEF;
(Ⅱ) 求二面角B-AC-D的平面角的正切值;
(Ⅲ) 若異面直線AB與DE所成角的余弦值為
2
4
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-GBCD中(如圖),PG⊥平面GBCD,GD∥BC,GD=
3
4
BC,且BG⊥GC,GB=GC=2,E是BC的中點,PG=4
(Ⅰ)求異面直線GE與PC所成角的余弦值;
(Ⅱ)若F點是棱PC上一點,且DF⊥GC,PF:FC=k,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an+1=
1
2
an2-
n
2
an+1(n∈N*)且a1=3.
(1)求a2,a3,a4的值及數(shù)列{an}的通項an;
(2)設(shè)數(shù)列{bn}滿足bn=
2an+1
an(an+1)(an+2)
,Sn為數(shù)列{bn}的前n項和,求證:
7
60
≤Sn
13
24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)動點P(x,y)與兩定點A(-2,0),B(2,0)連級的斜率之積等于-
1
3
,若點P的軌跡為曲線E,過點(-1,0)作斜率不為零的直線BC交曲線E于點B、C.
(Ⅰ)求曲線E的方程;
(Ⅱ)求證:AB⊥AC;
(Ⅲ)求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次國際象棋比賽規(guī)定,勝一局得3分,平一局得1分,負(fù)一局得0分,某參賽隊員比賽一局勝的概率為a,平局的概率為b,負(fù)的概率為c(a、b、c∈[0,1)),已知他比賽一局得分的數(shù)學(xué)期望為1,則ab的最大值為(  )
A、
1
3
B、
1
2
C、
1
12
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+3
3x
,數(shù)列{an}滿足a1=1,an+1=f(
1
an
),n∈N*,
(1)求數(shù)列{an}的通項公式;
(2)令Tn=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,求Tn;
(3)令bn=
1
an-1an
 (n≥2),b1=3,sn=b1+b2+…+bn,若sn
m-2005
2
對一切n∈N+成立,求最小正整數(shù)m.

查看答案和解析>>

同步練習(xí)冊答案