某次國際象棋比賽規(guī)定,勝一局得3分,平一局得1分,負一局得0分,某參賽隊員比賽一局勝的概率為a,平局的概率為b,負的概率為c(a、b、c∈[0,1)),已知他比賽一局得分的數(shù)學(xué)期望為1,則ab的最大值為( 。
A、
1
3
B、
1
2
C、
1
12
D、
1
6
考點:離散型隨機變量的期望與方差,相互獨立事件的概率乘法公式
專題:計算題,概率與統(tǒng)計
分析:由條件知,3a+b=1,利用基本不等式,可求ab的最大值.
解答: 解:由條件知,3a+b=1,∴ab=
1
3
(3a)•b≤
1
3
•(
3a+b
2
2=
1
12
,
等號在3a=b=
1
2
,即a=
1
6
,b=
1
2
時成立
故選C.
點評:本題考查離散型隨機變量的期望與方差,考查基本不等式的運用,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|mx+1-
x-3
=0,x∈R},若M=∅,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=1-
1
x-1
,用圖象變換法作出其函數(shù)圖象.
(1)通過觀察圖象,說明與函數(shù)y=-
1
x
圖象的關(guān)系;
(2)試探求f(1+x)+f(1-x)是否為定值,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機變量x和y的聯(lián)合概率密度為:f(x,y)=4xy(0≤x≤1,0≤y≤1),求x和y的聯(lián)合分布函數(shù)F(x,y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四面體P-ABC中,PA=4,AC=2
7
,PB=PC=2
3
,PA⊥平面PBC,則四面體P-ABC的內(nèi)切球半徑與外接球半徑的比( 。
A、
2
16
B、
3
2
8
C、
3
2
16
D、
2
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
x-1
,x∈[2,6].
(1)證明:f(x)是定義域上的減函數(shù);
(2)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=loga(x+
x2+1
),若f(-2)=3,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2,n∈N*
(1)若bn=
an
2n
,求數(shù)列{bn}的前n項和Pn;
(2)若cn=
Sn
2n
,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,t>0,下列四個條件中,使a>b成立的必要不充分條件是( 。
A、a>b-t
B、a>b+t
C、|a|>|b|
D、4a>4b

查看答案和解析>>

同步練習(xí)冊答案