15.過(guò)點(diǎn)(1,0)且與直線x+3y-1=0垂直的直線方程的一般式是3x-y-3=0.

分析 設(shè)與直線x+3y-1=0垂直的直線方程的一般式是3x-y+m=0,把點(diǎn)(1,0)代入即可得出.

解答 解:設(shè)與直線x+3y-1=0垂直的直線方程的一般式是3x-y+m=0,
把點(diǎn)(1,0)代入可得:3+m=0,解得m=-3.
因此所求的方程為:3x-y-3=0.
故答案為:3x-y-3=0.

點(diǎn)評(píng) 本題考查了相互垂直的直線斜率之間的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=kax-a-x(a>0且a≠1)是奇函數(shù),f(1)=$\frac{3}{2}$.
(Ⅰ)求函數(shù)f(x)在[1,+∞)上的值域;
(Ⅱ)若函數(shù)g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值為-2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某商店預(yù)備在一個(gè)月內(nèi)分批購(gòu)買(mǎi)每張價(jià)值為200元的書(shū)桌共36臺(tái),每批都購(gòu)入x臺(tái)(x是正整數(shù)),且每批均需付運(yùn)費(fèi)40元,儲(chǔ)存購(gòu)入的書(shū)桌一個(gè)月所付的保管費(fèi)與每批購(gòu)入書(shū)桌的總價(jià)值(不含運(yùn)費(fèi))成正比,若每批購(gòu)入4臺(tái),則該月需用去運(yùn)費(fèi)和保管費(fèi)共520元,現(xiàn)在全月只有480元資金可以用于支付運(yùn)費(fèi)和保管費(fèi).
(1)求該月需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用f(x);
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫(xiě)出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,其中左焦點(diǎn)為F(-2,0)
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=x+m與橢圓C交于不同的兩點(diǎn)A,B,且線段AB的中點(diǎn)M在圓x2+y2=1外,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.?dāng)?shù)列{an}中,a1=8,a4=2且滿足an+2=2an+1-an n∈N*
(I)證明數(shù)列{an} 是等差數(shù)列,并求其通項(xiàng)公式;
(II)設(shè)Sn=|a1|+|a2|+…+|an|,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.為了得到函數(shù)y=$\sqrt{2}$cos(3x-$\frac{π}{4}$)的圖象,可以將函數(shù)y=$\sqrt{2}$cos3x的圖象( 。
A.向右平移$\frac{π}{4}$個(gè)單位B.向左平移$\frac{π}{4}$個(gè)單位
C.向右平移$\frac{π}{12}$個(gè)單位D.向左平移$\frac{π}{12}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{e}$))=( 。
A.$\frac{1}{e}$B.eC.-$\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)M(x0,y0)在圓O:x2+y2=4上運(yùn)動(dòng)(O為圓心),N(4,0),點(diǎn)P(x,y)為線段MN的中點(diǎn).
(1)求點(diǎn)P(x,y)的軌跡方程;
(2)求點(diǎn)P(x,y)到直線3x+4y-86=0的距離的最大值和最小值.
(3)設(shè)直線l:y=x+b與圓O相交于A,B兩點(diǎn),問(wèn)當(dāng)b取何值時(shí),三角形AOB的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-y+1≥0\end{array}\right.$,則z=4x-y的最小值為$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案