5.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-y+1≥0\end{array}\right.$,則z=4x-y的最小值為$\frac{1}{2}$.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
由z=4x-y得y=4x-z,
平移直線y=4x-z,
由圖象可知當(dāng)直線y=4x-z經(jīng)過點(diǎn)C時,此時z最小,
由$\left\{\begin{array}{l}{x-y-2=0}\\{x-y+1=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=\frac{3}{2}}\end{array}\right.$,
即C($\frac{1}{2}$,$\frac{3}{2}$),此時z=4×$\frac{1}{2}$-$\frac{3}{2}$=$\frac{1}{2}$,
故答案為:$\frac{1}{2}$

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過點(diǎn)(1,0)且與直線x+3y-1=0垂直的直線方程的一般式是3x-y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=ex+ae-x為偶函數(shù),若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則切點(diǎn)的橫坐標(biāo)等于(  )
A.ln2B.2ln2C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)是定義在R上的偶函數(shù)且以2為周期,則“f(x)為[0,1]上的增函數(shù)”是“f(x)為[3,4]上的減函數(shù)”的( 。
A.充分而不必要的條件B.必要而不充分的條件
C.充要條件D.既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{x+1}{x-1}$,若g(x)=f-1($\frac{1}{x}$),則g(x)( 。
A.在(-1,+∞)上是增函數(shù)B.在(-1,+∞)上是減函數(shù)
C.在(-∞,1)上是增函數(shù)D.在(-∞,1)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C的對邊分別為a,b,c且滿足bcosA=(2c-a)cosB.
(1)求角B的大小;
(2)若b=4$,\;\;\overrightarrow{BA}•\overrightarrow{BC}$=4,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四組函數(shù)中,表示同一函數(shù)的是( 。
A.f(x)=|x|,g(x)=$\sqrt{{x}^{2}}$B.f(x)=lgx2,g(x)=2lgx
C.f(x)=$\frac{{x}^{2}-1}{x-1}$,g(x)=x+1D.f(x)=$\sqrt{x-1}$,g(x)=$\sqrt{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=x2+bx+c對于任意實(shí)數(shù)t都有f(2+t)=f(2-t),則f(1),f(2),f(4)的大小關(guān)系為( 。
A.f(1)<f(2)<f(4)B.f(2)<f(1)<f(4)C.f(4)<f(2)<f(1)D.f(4)<f(1)<f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知平面直角坐標(biāo)系中的動點(diǎn)M與兩個定點(diǎn)M1(26,1),M2(2,1)的距離之比等于5.
(Ⅰ)求動點(diǎn)M的軌跡方程,并說明軌跡是什么圖形;
(Ⅱ)記動點(diǎn)M的軌跡為C,過點(diǎn)P(-2,3)的直線l被C所截得的弦長為8,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案