已知直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=2,BC=1,P是腰DC上的動點,則|
PA
+3
PB
|的最小值為( 。
A、4
B、5
C、
6
D、2
考點:平面向量數(shù)量積的運算
專題:計算題,平面向量及應用
分析:根據題意,利用解析法求解,以直線DA,DC分別為x,y軸建立平面直角坐標系,則A(2,0),B(1,a),C(0,a),D(0,0),設P(0,b)(0≤b≤a),求出
PA
,
PB
,根據向量模的計算公式,即可求得|
PA
+3
PB
|,利用完全平方式非負,即可求得其最小值.
解答: 解:如圖,以直線DA,DC分別為x,y軸建立平面直角坐標系,
則A(2,0),B(1,a),C(0,a),D(0,0)
設P(0,b)(0≤b≤a)
PA
=(2,-b),
PB
=(1,a-b),
PA
+3
PB
=(5,3a-4b)
∴|
PA
+3
PB
|=
25+(3a-4b)2
≥5,
即有當3a=4b時,取得最小值5.
故選B.
點評:此題是個基礎題.考查向量在幾何中的應用,以及向量模的求法,同時考查學生靈活應用知識分析解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,點E為棱PC的中點.
(Ⅰ)證明:BE⊥DC;
(Ⅱ)求BE的長;
(Ⅲ)若F為棱PC上一點,滿足BF⊥AC,求二面角F-AB-P的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐S-ABC中,SA⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AB⊥SC;
(Ⅱ)設D,F(xiàn)分別是AC,SA的中點,點G是△ABD的重心,求證:FG∥平面SBC;
(Ⅲ)若SA=AB=2,AC=4,求二面角A-FD-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某市從2014屆高中畢業(yè)生中抽取1000名學生的數(shù)學成績作為樣本進行統(tǒng)計,其頻率分布直方圖如圖所示,則這1000名學生的數(shù)學平均成績的最大值可能為(  )
A、67.50
B、72.50
C、76.50
D、77.50

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

OA,
OB
的夾角為θ,|
OA
|=2,|
OB
|=1,
OM
=k
OA
,
ON
=(1-k)
OB
,|
MN
|=f(k)在k=k0時取得最小值,若0<k0
2
7
,則θ的取值范圍是(  )
A、(
π
3
π
2
B、(
π
2
3
C、(
π
3
,
3
D、(
π
3
,π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(cosα,sinα),
b
=(cosβ,sinβ),
c
=(-1,O)
(1)求向量
b
+
c
的長度的最大值;
(2)設α=
π
4
,且
a
⊥(
b
+
c
),求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)滿足:當x1,x2∈(0,+∞)時,(x1-x2)[f(x1)-f(x2)]>0恒成立.設a=f(-4),b=f(1),c=f(3),則a,b,c的大小關系為(  )
A、a<b<c
B、b<a<c
C、b<c<a
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直線PA與圓O相切于點A,PBC是過點O的割線,∠APE=∠CPE,點H是線段ED的中點.
(1)證明:A,E,F(xiàn),D四點共圓;
(2)證明:PF2=PB•PC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:(n+1)an=(n-1)an-1+2,求數(shù)列{an}的通項.

查看答案和解析>>

同步練習冊答案