閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ           …①
sin(α-β)=sinαcosβ-cosαsinβ          …②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  …③
令α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述結(jié)論,試求sin15°+sin75°的值.
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA+cosB=2cos
A+B
2
•cos
A-B
2

(3)求函數(shù)y=cos2x•cos(2x+
π
6
)x∈[0,
π
4
]的最大值.
考點(diǎn):類比推理,兩角和與差的正弦函數(shù)
專題:規(guī)律型,三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)由sinA+sinB=2sin
A+B
2
cos
A-B
2
,令A(yù)=15°,B=75°,代和可得sin15°+sin75°的值.
(2)由cos(α+β)=cosαcosβ-sinαsinβ,cos(α-β)=cosαcosβ+sinαsinβ兩式相加得:cos(α+β)+cos(α-β)=2cosαcosβ,令α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2
,可得結(jié)論;
(3)結(jié)合(2)的結(jié)論,將A=2x,B=2x+
π
6
,代入化簡函數(shù)的解析式,進(jìn)而根據(jù)x∈[0,
π
4
],求出相位角4x+
π
6
∈[
π
6
,
6
]
,進(jìn)而根據(jù)余弦函數(shù)的圖象和性質(zhì)得到函數(shù)y=cos2x•cos(2x+
π
6
)x∈[0,
π
4
]的最大值.
解答: 解:(1)∵sinA+sinB=2sin
A+B
2
cos
A-B
2

∴sin15°+cos75°=2sin
15°+75° 
2
•cos
15°-75°
2
=2sin45°•cos(-30°)=
6
2
…3
(2)因?yàn)閏os(α+β)=cosαcosβ-sinαsinβ,------①
cos(α-β)=cosαcosβ+sinαsinβ------②…5
①+②得cos(α+β)+cos(α-β)=2cosαcosβ,③
令α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2
,…6
代入③得:cosA+cosB=2cos
A+B
2
•cos
A-B
2
.…7
(3)由(2)知,y=cos2xcos(2x+
π
6
)=
1
2
[cos(4x+
π
6
)+cos
π
6
]=
1
2
cos(4x+
π
6
)+
3
4
…8
x∈[0,
π
4
]
,
4x+
π
6
∈[
π
6
,
6
]
,…..9
故函數(shù)的最大值為f(0)=
3
2
.…10
點(diǎn)評:本小題主要考查兩角和與差三角函數(shù)公式、二倍角公式、三角函數(shù)的恒等變換等基礎(chǔ)知識,考查推理論證能力,運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A+B=
5
4
π,且A,B≠kπ+
π
2
(k∈Z),求證:(1+tanA)(1+tanB)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的表面積為am2,且它的側(cè)面展開圖是一個(gè)半圓,求這個(gè)圓錐的底面直徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

據(jù)《揚(yáng)子晚報(bào)》報(bào)道,2013年8月1日至8月28日,某市交管部門共抽查了1000輛車,查出酒后駕車和醉酒駕車的駕駛員80人,圖示是對這80人血液中酒精含量進(jìn)行檢查所得結(jié)果的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖完成下表:
酒精含量(單位:mg/100ml) [20,30) [30,40) [40,50) [50,60)
人數(shù)
酒精含量(單位:mg/100ml) [60,70) [70,80) [80,90) [90,100]
人數(shù)
(2)根據(jù)上述數(shù)據(jù),求此次抽查的1000人中屬于醉酒駕車的概率;
(3)若用分層抽樣的方法從血液酒精濃度在[70,90)范圍內(nèi)的駕駛員中抽取一個(gè)容量為5的樣本,并將該樣本看成一個(gè)總體,從中任取2人,求恰有1人屬于醉酒駕車的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2 x2-3x,x∈R
(1)若f(x)≥
1
4
,求x的范圍;
(2)求f(x)在x∈[-1,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(4,3),
b
=(-1,2)
(1)求 
a
b
的角的余弦;
(2)若(
a
b
)⊥(2
a
+
b
),求λ;
(3)若(
a
b
)∥(2
a
+
b
),求λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(5x-
x
n的展開式的各項(xiàng)系數(shù)之和為M,二項(xiàng)式系數(shù)之和為N,M-N=240,求展開式中x3項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解某班關(guān)注NBA(美國職業(yè)籃球)是否與性別有關(guān),對某班48人進(jìn)行了問卷調(diào)查得到如下的列聯(lián)表:
關(guān)注NBA 不關(guān)注NBA 合計(jì)
男生 6
女生 10
合計(jì) 48
已知在全班48人中隨機(jī)抽取1人,抽到關(guān)注NBA的學(xué)生的概率為
2
3

(1)請將上面的表補(bǔ)充完整(不用寫計(jì)算過程),并判斷是否有95%的把握認(rèn)為關(guān)注NBA與性別有關(guān)?說明你的理由;
(2)設(shè)甲,乙是不關(guān)注NBA的6名男生中的兩人,丙,丁,戊是關(guān)注NBA的10名女生中的3人,從這5人中選取2人進(jìn)行調(diào)查,求:甲,乙至少有一人被選中的概率.
答題參考:
P(K2≥k) 0.10 0.05 0.010 0.005
k0 2.706 3.841 6.635 7.879
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD為正方形,△ABE為等腰直角三角形,∠BAE=90°,且AD⊥AE.
(Ⅰ)證明:平面AEC⊥平面BED.
(Ⅱ)求直線EC與平面BED所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案