已知f(x)=2 x2-3x,x∈R
(1)若f(x)≥
1
4
,求x的范圍;
(2)求f(x)在x∈[-1,1]上的值域.
考點(diǎn):指數(shù)函數(shù)綜合題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)直接根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行求解;
(2)首先,根據(jù)二次函數(shù)的單調(diào)性,然后,借助于指數(shù)函數(shù)的單調(diào)性進(jìn)行求解,從而確定其值域問題.
解答: 解:(1)∵f(x)=2 x2-3x,
∴f(x)≥
1
4
=2-2,
∴2 x2-3x≥2-2,
∴x2-3x≥-2,
∴x2-3x+2≥0,
∴x≤1或x≥2,
∴x的范圍(-∞,1]∪[2,+∞);
(2)∵f(x)=2 x2-3x,
設(shè)t=x2-3x=(x-
3
2
)2-
9
4
,
∵x∈[-1,1],
∴t∈[-2,4],
∴y∈[
1
4
,16].
∴f(x)在x∈[-1,1]上的值域[
1
4
,16].
點(diǎn)評:本題重點(diǎn)考查了指數(shù)函數(shù)的單調(diào)性、二次函數(shù)的性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2-
1
x+1
-x(x>-1),若f(x)≤t2-2at+1大于所有的x∈(-1,+∞),a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-p(x-1),p∈R.
(1)當(dāng)p=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)g(x)=xf(x)+p(2x2-x-1)(x≥1),求證:當(dāng)p≤-
1
2
時(shí),有g(shù)(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了了解小學(xué)生的體能情況,抽取了某小學(xué)同年級部分學(xué)生進(jìn)行跳繩測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,已知如圖:第一小組的頻數(shù)為5.
(1)求第四小組的頻率;
(2)參加這次測試的學(xué)生人數(shù)是多少?
(3)估算學(xué)生這次跳繩次數(shù)的中位數(shù)與平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+x2-3a2x-2a-25
(1)若函數(shù)f(x)在(-1,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)若a>0,當(dāng)0≤x≤3時(shí)f(x)≤x2+a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ           …①
sin(α-β)=sinαcosβ-cosαsinβ          …②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  …③
令α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述結(jié)論,試求sin15°+sin75°的值.
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA+cosB=2cos
A+B
2
•cos
A-B
2

(3)求函數(shù)y=cos2x•cos(2x+
π
6
)x∈[0,
π
4
]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)盒子里裝有6張卡片,其中有紅色卡片4張,編號分別為1,2,3,4; 白色卡片2張,編號分別為1,2.
(1)從盒子中隨機(jī)抽取2張卡片,求兩張都是紅色的概率;
(2)從盒子中有放回的逐次抽取2張卡片,求兩張卡片的編號都為2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱錐A-BCD中,E、F分別是棱AB、BC的中點(diǎn),H、G分別是棱AD、CD上的點(diǎn),且EH∩FG=K.求證:
(1)EH,BD,F(xiàn)G三條直線相交于同一點(diǎn)K;
(2)EF∥HG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用導(dǎo)數(shù)的定義求:
(1)y=
2
x2
在x=1處的導(dǎo)數(shù);
(2)y=x2+ax+b(a,b為常數(shù))在x=-1處的導(dǎo)數(shù).

查看答案和解析>>

同步練習(xí)冊答案