函數(shù)y=
x2
10
和y=|log3x|的交點(diǎn)個(gè)數(shù)有
 
個(gè).
考點(diǎn):對數(shù)函數(shù)的圖像與性質(zhì)
專題:作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意作函數(shù)y=
x2
10
和y=|log3x|的圖象,從而得到答案.
解答: 解:作函數(shù)y=
x2
10
和y=|log3x|的圖象如下,

由圖可知,有3個(gè)交點(diǎn),
故答案為:3.
點(diǎn)評:本題考查了函數(shù)的圖象的交點(diǎn)的個(gè)數(shù)問題,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lgx+x-2在下列哪個(gè)區(qū)間一定存在零點(diǎn)( 。
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
bx-a
ax
(a>0,x>0)的圖象過點(diǎn)(a,0).
(1)判斷函數(shù)f(x)在(0.+∞)上的單調(diào)并用函數(shù)單調(diào)性定義加以證明;
(2)若a>
1
5
函數(shù)f(x)在[
1
5a
,5a]上的值域是[
1
5a
,5a],求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)為奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x-1
(1)求f(x)在[-1,0)上的解析式
(2)求f(log 
1
2
24)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對于一切x,y∈R,都有f(x+y)=f(x)+f(y)且f(x)在R上為減函數(shù),當(dāng)x>0時(shí),f(x)<0,f(1)=-2
(1)求f(0),f(2)的值.    
(2)判定函數(shù)的奇偶性.
(3)若f(x2-2x+3)<f(x2+x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=12,則a5+a6=(  )
A、
12
5
B、12
C、6
D、
6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對稱中心,且“拐點(diǎn)”就是對稱中心.設(shè)函數(shù)g(x)=
1
3
x3-
1
2
x2+3x-
5
12
,則g(
1
2014
)+g(
2
2014
)+…+g(
2013
2014
)( 。
A、2011B、2012
C、2013D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4
2
1
x
dx( 。
A、-2ln2
B、ln 2
C、2 ln 2
D、-ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列寫法:
(1){0}∈{1,2,3};(2)∅⊆{0};(3){0,1,2}⊆{1,2,0};(4)0∈∅
其中錯(cuò)誤寫法的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案