已知函數(shù)f(x)=
bx-a
ax
(a>0,x>0)的圖象過點(a,0).
(1)判斷函數(shù)f(x)在(0.+∞)上的單調(diào)并用函數(shù)單調(diào)性定義加以證明;
(2)若a>
1
5
函數(shù)f(x)在[
1
5a
,5a]上的值域是[
1
5a
,5a],求實數(shù)a的值.
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)的值域
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)代入點的坐標(biāo),求得f(x),再由單調(diào)性的定義,即可證得f(x)在(0.+∞)上為增函數(shù);
(2)由函數(shù)的單調(diào)性,即可得到最值,解方程,即可求得a.
解答: 解:(1)函數(shù)f(x)=
bx-a
ax
(a>0,x>0)的圖象過點(a,0),
則0=
ab-a
ab
,則b=1,則f(x)=
x-a
ax
=
1
a
-
1
x
,
f(x)在(0.+∞)上為增函數(shù),
理由如下:設(shè)0<m<n,則f(m)-f(n)=
1
a
-
1
m
-(
1
a
-
1
n

=
m-n
mn
,由于0<m<n,則m-n<0,mn>0,則f(m)-f(n)<0,
則f(x)在(0.+∞)上為增函數(shù);
(2)由于f(x)在(0.+∞)上為增函數(shù),
則函數(shù)f(x)在[
1
5a
,5a]上的值域是[f(
1
5a
),f(?5a)],
即有
1
a
-5a=
1
5a
1
a
-
1
5a
=5a
,解得,a=
2
5
點評:本題考查函數(shù)的單調(diào)性的判斷和運用,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A′B′C′D′中,點E在A′B上,點F在B′D′上,且BE=B′F,求證:EF∥平面BCC′B′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=cos(2x+
π
3
),有下列結(jié)論:
①點(-
5
12
π,0)
是函數(shù)f(x)圖象的一個對稱中心;
②直線x=
π
3
是函數(shù)f(x)圖象的一條對稱軸;
③函數(shù)f(x)的最小正周期是π;
④函數(shù)f(x)的單調(diào)遞增區(qū)間為[-
12
+kπ,
π
12
+kπ](k∈Z)

其中所有正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z=
3(1-2i)
1-i
則復(fù)平面上復(fù)數(shù)z所對應(yīng)的點在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x2+4x-2在區(qū)間[0,3]上最大值,最小值分別為( 。
A、2和1B、2和-1
C、1和-2D、2和-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=loga(x+b)(a>0且a≠1)的圖象如圖,則( 。
A、0<b<1<a
B、0<b<a<1
C、0<a<b<1
D、0<a<1<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+m-1
2-x
,且f(1)=1
(1)求實數(shù)m的值;
(2)判斷函數(shù)y=f(x)在你區(qū)間(-∞,m-1]上的單調(diào)性,并用函數(shù)單調(diào)性的定義證明
(3)求實數(shù)k的取值范圍,使得關(guān)于x的方程f(x)=kx分別為:①有且僅有一個實數(shù)解②有兩個不同的實數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x2
10
和y=|log3x|的交點個數(shù)有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=cos(sinx),下列說法正確的是
 

①定義域為R;
②值域為[-1,1];
③最小正周期是2π;
④圖象關(guān)于直線x=
2
(k∈Z)對稱.

查看答案和解析>>

同步練習(xí)冊答案