分析 (1)由($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow$-$\overrightarrow{a}$),可得($\overrightarrow{a}$+k$\overrightarrow{c}$)•(2$\overrightarrow$-$\overrightarrow{a}$)=0,解得k.
(2)設(shè)$\overrightarrows7yfysi$=(x,y),由$\overrightarrowwvm1gpi$∥$\overrightarrow{c}$,且|$\overrightarrowxbujzrm$|=$\sqrt{34}$,可得$\left\{\begin{array}{l}{x-4y=0}\\{{x}^{2}+{y}^{2}=34}\end{array}\right.$,解出即可得出.
解答 解:(1)$\overrightarrow{a}$+k$\overrightarrow{c}$=(3+4k,2+k),
2$\overrightarrow$-$\overrightarrow{a}$=(-5,2),∵($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow$-$\overrightarrow{a}$),∴($\overrightarrow{a}$+k$\overrightarrow{c}$)•(2$\overrightarrow$-$\overrightarrow{a}$)=(3+4k)×(-5)+(2+k)×2=0,解得k=-$\frac{11}{18}$.
(2)設(shè)$\overrightarrowxdbshar$=(x,y),∵$\overrightarrowfivk26w$∥$\overrightarrow{c}$,且|$\overrightarrowoogxrgx$|=$\sqrt{34}$,∴$\left\{\begin{array}{l}{x-4y=0}\\{{x}^{2}+{y}^{2}=34}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4\sqrt{2}}\\{y=\sqrt{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-4\sqrt{2}}\\{y=-\sqrt{2}}\end{array}\right.$,
∴向量$\overrightarrowrtq2nyr$的坐標(biāo)為$(4\sqrt{2},\sqrt{2})$,或$(-4\sqrt{2},-\sqrt{2})$.
點(diǎn)評(píng) 本題考查了向量坐標(biāo)運(yùn)算性質(zhì)、向量共線定理、向量相等、向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 9或10 | D. | 10或11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com