【題目】設(shè)函數(shù) , ,對任意, 不等式恒成立,則正數(shù)的取值范圍是__________

【答案】

【解析】分析:當(dāng)x0時,f(x)=e2x+,利用基本不等式可求f(x)的最小值,對函數(shù)g(x)求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,進而可求g(x)的最大值,問題轉(zhuǎn)化為,可求正數(shù)的取值范圍

詳解:當(dāng)x0時,f(x)=e2x+≥2

x1(0,+∞)時,函數(shù)f()有最小值2e,

g(x)=,=,

當(dāng)x1時, 0,則函數(shù)g(x)在(0,1)上單調(diào)遞增,

當(dāng)x1時, 0,則函數(shù)在(1,+∞)上單調(diào)遞減,

x=1時,函數(shù)g(x)有最大值g(1)=e,

則有x1、x2∈(0,+∞),f(x1min=2e>g(x2max=e,

不等式恒成立且k>0,

,k1.

故答案為:k≥1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列四個命題:①命題,則的逆否命題為假命題:

②命題,則的否命題是,則”;

③若為真命題,為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個數(shù)有(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】始于2007年初的美國次貸危機,至2008年中期,已經(jīng)演變?yōu)槿蚪鹑谖C.受此影響,國際原油價格從20087月每桶最高的147美元開始大幅下跌,9月跌至每桶97美元.你能求出國際原油價格7月到9月之間平均每月下降的百分比嗎?若按此計算,到什么時間跌至谷底(即每桶34美元)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是菱形, 交于點 底面,點中點, .

(1)求直線所成角的余弦值;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,∠ABC=∠BCD= ,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中點.

(1)求證:AE∥平面PBC;
(2)若直線AE與直線BC所成角等于 ,求二面角D﹣PB﹣A平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點M(a,b)所經(jīng)過的區(qū)域面積=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 =1(a>b>0)經(jīng)過點P(﹣2,0)與點(1,1).
(1)求橢圓的方程;
(2)過P點作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經(jīng)過定點;
②求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面,,,的中點.

(1)求證:

(2)求證:;

(3)求二面角E-AB-C的正切值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求在區(qū)間上的最值;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時,有恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案