【題目】設(shè)函數(shù).

(Ⅰ)當(dāng)曲線在點(diǎn)處的切線與直線垂直時(shí),求的值;

(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)利用導(dǎo)數(shù)的幾何意義求得a的值;(2)函數(shù)有兩個(gè)零點(diǎn),則方程恰有兩個(gè)不相等的正實(shí)根,即方程恰有兩個(gè)不相等的正實(shí)根. 研究函數(shù)的單調(diào)性與極值即可.

試題解析:

(Ⅰ)由題意知,函數(shù)的定義域?yàn)?/span>, ,∴,解得.

(Ⅱ)若函數(shù)有兩個(gè)零點(diǎn),則方程恰有兩個(gè)不相等的正實(shí)根,即方程恰有兩個(gè)不相等的正實(shí)根.設(shè)函數(shù),∴ .

當(dāng)時(shí), 恒成立,則函數(shù)上是增函數(shù),∴函數(shù)最多一個(gè)零點(diǎn),不合題意,舍去;當(dāng)時(shí),令,解得,令,解得,則函數(shù)內(nèi)單調(diào)遞減,在上單調(diào)遞增.易知時(shí), 恒成立,要使函數(shù)有2個(gè)正零點(diǎn),則的最小值,即,即,∵,∴,解得,即實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)= 為奇函數(shù),a為常數(shù).
(1)求a的值;并判斷f(x)在區(qū)間(1,+∞)上的單調(diào)性;
(2)若對(duì)于區(qū)間(3,4)上的每一個(gè)x的值,不等式f(x)> 恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個(gè)共享單車企業(yè)在某個(gè)城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過(guò)程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量(千輛)

2

3

4

5

8

每天一輛車平均成本(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .

(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù):

①完成下表(計(jì)算結(jié)果精確到0.1)(備注: ,稱為相應(yīng)于點(diǎn)的殘差(也叫隨機(jī)誤差));

租用單車數(shù)量 (千輛)

2

3

4

5

8

每天一輛車平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值

2.4

2.1

1.6

殘差

0

-0.1

0.1

模型乙

估計(jì)值

2.3

2

1.9

殘差

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和,并通過(guò)比較的大小,判斷哪個(gè)模型擬合效果更好.

(2)這個(gè)公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場(chǎng)調(diào)查,這個(gè)城市投放8千輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬(wàn)輛時(shí),該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.4,0.6.問(wèn)該公司應(yīng)該投放8千輛還是1萬(wàn)輛能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤(rùn)=收入-成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)解不等式f(x)<
(2)求函數(shù)f(x)值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)求的單調(diào)區(qū)間;

(2)若為整數(shù),且當(dāng)時(shí), 恒成立,其中的導(dǎo)函數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)是棱長(zhǎng)為2的正方體的棱的中點(diǎn),點(diǎn)在面所在的平面內(nèi),若平面分別與平面和平面所成的銳二面角相等,則點(diǎn)到點(diǎn)的最短距離是( )

A. B. C. 1 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)= 的定義域?yàn)锳,m>0,函數(shù)g(x)=4 x1(0<x≤m)的值域?yàn)锽.
(1)當(dāng)m=1時(shí),求 (R A)∩B;
(2)是否存在實(shí)數(shù)m,使得A=B?若存在,求出m的值; 若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某機(jī)構(gòu)為了解某地區(qū)中學(xué)生在校月消費(fèi)情況,隨機(jī)抽取了100名中學(xué)生進(jìn)行調(diào)查.如圖是根據(jù)調(diào)查的結(jié)果繪制的學(xué)生在校月消費(fèi)金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個(gè)金額段的學(xué)生人數(shù)成等差數(shù)列,將月消費(fèi)金額不低于550元的學(xué)生稱為“高消費(fèi)群”.

(1)求m,n的值,并求這100名學(xué)生月消費(fèi)金額的樣本平均數(shù) (同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認(rèn)為“高消費(fèi)群”與性別有關(guān)?

高消費(fèi)群

非高消費(fèi)群

合計(jì)

10

50

合計(jì)

(參考公式: ,其中n=a+b+c+d)

P(K2≥k)

0.10

0.05

0.025

0.010

0.005

0.001

k

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校學(xué)生社團(tuán)為了解“大數(shù)據(jù)時(shí)代”下大學(xué)生就業(yè)情況的滿意度,對(duì)20名學(xué)生進(jìn)行問(wèn)卷計(jì)分調(diào)查(滿分100分),得到如圖所示的莖葉圖:

(1)計(jì)算男生打分的平均分,觀察莖葉圖,評(píng)價(jià)男女生打分的分散程度;

(2)從打分在80分以上的同學(xué)隨機(jī)抽3人,求被抽到的女生人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案