A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{5}{13}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{6}}{3}$ |
分析 由條件利用同角三角函數的基本關系求得,cosα=$\frac{2}{3}$cosβ,且 cosα=$\sqrt{{4cos}^{2}β-3}$,由此求得cosα的值.
解答 解:α是第一象限角,且sinα=2sinβ,tanα=3tanβ,則cosα=$\frac{sinα}{tanα}$=$\frac{2sinβ}{3tanβ}$=$\frac{2}{3}$cosβ,
再根據cosα=$\sqrt{{1-sin}^{2}α}$=$\sqrt{{1-4sin}^{2}β}$=$\sqrt{{4cos}^{2}β-3}$,
可得${(\frac{2}{3}cosβ)}^{2}$=4cos2β-3,∴cosβ=$\sqrt{\frac{27}{32}}$=$\frac{3\sqrt{6}}{8}$,∴cosα=$\frac{2}{3}$cosβ=$\frac{2}{3}•\frac{3\sqrt{6}}{8}$=$\frac{\sqrt{6}}{4}$,
故選:A.
點評 本題主要考查同角三角函數的基本關系的應用,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | [-2,3] | B. | (2,3) | C. | [1,2) | D. | (-2,1) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com