分析 (Ⅰ)由二倍角公式、誘導公式、同角三角函數(shù)關系式、三角函數(shù)恒等式推導出sinA+$\sqrt{3}cosA$-$\sqrt{3}$=0,從而2sin(A+$\frac{π}{3}$)=$\sqrt{3}$,由此能求出A的值.
(Ⅱ)由△ABC為銳角三角形,b=2,A=$\frac{π}{3}$,得到$\frac{π}{6}$<C<$\frac{π}{2}$,由此能求出c的取值范圍.
解答 解:(Ⅰ)在△ABC中,∵4sinAcos2A-$\sqrt{3}$cos(B+C)=sin3A+$\sqrt{3}$.
∴4×$sinA×\frac{cos2A+1}{2}$+$\sqrt{3}$cosA=sin(A+2A)+$\sqrt{3}$,
2sinAcos2A+2sinA+$\sqrt{3}sinA$=sinAcos2A+cosAsin2A+$\sqrt{3}$,
∴sinAcos2A-cosAsin2A+2sinA+$\sqrt{3}$cosA-$\sqrt{3}$=0,
∴sinA+$\sqrt{3}cosA$-$\sqrt{3}$=0,
∴2sin(A+$\frac{π}{3}$)=$\sqrt{3}$,
∵0<A<π,∴A=$\frac{π}{3}$.
(Ⅱ)∵△ABC為銳角三角形,b=2,A=$\frac{π}{3}$,
∴30°<C<90°,
∴$\sqrt{{2}^{2}-{1}^{2}}$<c<2×2,即$\sqrt{3}<c<4$.
∴c的取值范圍是($\sqrt{3},4$).
點評 本題考查三角形中角的求法,考查邊的取值范圍的求法,考查二倍角公式、誘導公式、同角三角函數(shù)關系式、三角函數(shù)恒等式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
分組(重量) | [80,85) | [85,90) | [90,95) | [95,100) |
頻數(shù)(個) | 5 | 15 | 30 | 15 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6,6,6,6,6 | B. | -2,-1,0,1,2 | C. | 5,8,11,14 | D. | 0,1,3,6,10. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{6}}{4}$ | B. | $\frac{5}{13}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$+2 | B. | $\sqrt{3}$+3 | C. | 2$\sqrt{3}$+4 | D. | $\sqrt{3}$+4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com