17.(1)已知函數(shù)f(x)=13-8x+$\sqrt{2}$x2,且f′(x0)=4,求x0的值.
(2)已知函數(shù)f(x)=x2+2xf′(0),求f′(0)的值.

分析 (1)求導(dǎo),代值計(jì)算即可,
(2)求導(dǎo),再令x=0,即可求出答案.

解答 解:(1)f′(x)=-8+2$\sqrt{2}$x,且f′(x0)=4,
∴-8+2$\sqrt{2}$x0=4,
解x0=3$\sqrt{2}$.
(2)f′(x)=2x+2f′(0),
令x=0得,f′(0)=2×0+2f′(0),
∴f′(0)=0.

點(diǎn)評 本題考查了導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)值的求法,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,a2=2,a6=8,則a9==±16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=x(x-c)2在x=2處有極大值,則實(shí)數(shù)c的值為( 。
A.2B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=$\frac{1}{2}$公比q>0,S1+a1,S3+a3,S2+a2成等差數(shù)列.
(1)求an
(2)設(shè)bn=$\frac{1}{(lo{g}_{2}{a}_{n})^{2}}$,cn=(n+1)bnbn+2,求數(shù)列{cn}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.從拋物線G:x2=2py(p為常數(shù)且p>0)外一點(diǎn)P引拋物線G的兩條切線PA和PB(切點(diǎn)為A、B),分別與x軸相交于點(diǎn)C、D,若AB與y軸相交于點(diǎn)Q.
(1)求證:四邊形PCQD是平行四邊形;
(2)四邊形PCQD能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C所對的邊長,且acosB+bcosA=2ccosC.
(1)求角C的值;
(2)若c=4,a+b=7,求S△ABC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知拋物線y2=4x上一點(diǎn)M(x0,2$\sqrt{3}$),則點(diǎn)M到拋物線焦點(diǎn)的距離為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在A,B,C,D,E五位候選人中,選出正副班長各一人的選法共有m種,選出三人班級委的選法共有n種,則(m,n)是 ( 。
A.(20,60)B.(10,10)C.(20,10)D.(10,60)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列an=$\left\{{\begin{array}{l}{\frac{9}{2},n=1}\\{{3^n},n≥2}\end{array}}$,記數(shù)列{an}的前n項(xiàng)和為Tn,若對任意的n∈N*都有Tn•k≥3n-6恒成立,則實(shí)數(shù)k的取值范圍k≥$\frac{2}{27}$.

查看答案和解析>>

同步練習(xí)冊答案