已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-2x-3,則當(dāng)x<0時(shí),f(x)=________.

-x2-2x+3
分析:首先設(shè)x<0,然后知-x>0,這樣就可以用x>0時(shí)的解析式,可寫出f(-x)的解析式,最后用奇函數(shù)條件求出f(x)的解析式.
解答:設(shè)x<0,則-x>0
∴f(-x)=(-x)2-2(-x)-3=x2+2x-3
又∵f(x)為奇函數(shù)
∴f(x)=-f(-x)=-(x2+2x-3)=-x2-2x+3
故答案為:-x2-2x+3
點(diǎn)評(píng):本題主要考查了利用函數(shù)奇偶性求對(duì)稱區(qū)間上的解析式問(wèn)題,關(guān)鍵是奇偶性的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知f(x)是奇函數(shù),且x<0時(shí),f(x)=cosx+sin2x,則當(dāng)x>0時(shí),f(x)的表達(dá)式是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是奇函數(shù),當(dāng)x>0時(shí)f(x)=-x(1+x),當(dāng)x<0時(shí)f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),且f(2-x)=f(x),當(dāng)x∈[2,3]時(shí),f(x)=log2(x-1),則當(dāng)x∈[1,2]時(shí),f(x)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)-g(x)=x3+x2+x.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x,則f(-
1
2
)
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案