考點:數(shù)列與不等式的綜合,數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:由已知得{
an+4×3n-2}是首項為4,公比為9的等比數(shù)列,從而a
n=
(9n-3n),進(jìn)而S
n=
4×9n-16×3n-1+,由此得到
=
=
=
,當(dāng)n≥2時,
=
<
•<
×
,由此能證明
+
+…+
<
.
解答:
解:∵S
n=
a
n-
×3
n+
,①
∴S
n-1=
a
n-1-
×3
n-1+
,②
①-②,得a
n=
an-
an-1-
×3n+
×3n-1,
整理,得
an+4×3
n-2=
an-1+4×3
n-1=9(
an-1+4×3n-3),
又a
1=S
1=
a1-
×3+,解得a
1=
,
a1+4×3-1=4,
∴{
an+4×3n-2}是首項為4,公比為9的等比數(shù)列,
∴
an+4×3
n-2=4×9
n-1,
∴a
n=
(9n-3n),
∴S
n=
[
-
]
=4(9
n-1)-
(3
n-1)
=
4×9n-16×3n-1+,
∴
=
=
=
,
當(dāng)n=1時,
=
<
,
當(dāng)n≥2時,3
n+1-4>2×3
n,
∴
=
<
•<
×
,
∴
+
+…+
<
(
++…+)
=
×
=
×
(1-
)
=
(1-)<
.
綜上所述,
+
+…+
<
.
點評:本題考查不等式的證明,解題時要認(rèn)真審題,注意等比數(shù)列的性質(zhì)、放縮法的合理運用.