已知數(shù)列{an}是等差數(shù)列,a2=8,a8=26,從{an}中依次取出第3項(xiàng),第9項(xiàng),第27項(xiàng),…,第3n項(xiàng),按原來的順序構(gòu)成一個(gè)新數(shù)列{bn},則bn=________.

3×3n+2
分析:由題意等差數(shù)列{an}中a2=8,a8=26,建立首項(xiàng)與公差的方程求出即可得到數(shù)列{an}的通項(xiàng)公式an;第3項(xiàng),第9項(xiàng),第27項(xiàng),…,第3n項(xiàng),按原來的順序排成一個(gè)新數(shù)列{bn},求出通項(xiàng)即可.
解答:設(shè){an}的首項(xiàng)為a1,公差為d,

∴an=5+3(n-1),即an=3n+2
由題意,設(shè)b1=a3,b2=a9,b3=a27,所以bn==3×3n+2.
故答案為:3×3n+2.
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的綜合,考查由等差數(shù)列的性質(zhì)求其通項(xiàng),以及據(jù)其性質(zhì)構(gòu)造等比數(shù)列,利用分組求和的技巧求新數(shù)列的和,其特征是一個(gè)數(shù)列的通項(xiàng)如果一個(gè)等差數(shù)列的項(xiàng)與一個(gè)等比數(shù)列的項(xiàng),則可以采用分組的方法求和.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義一個(gè)“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一項(xiàng)與它后一項(xiàng)的積都是同一常數(shù),那么這個(gè)數(shù)列叫“等積數(shù)列”,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,則這個(gè)數(shù)列的前n項(xiàng)和Sn的計(jì)算公式為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在一個(gè)數(shù)列中,如果?n∈N*,都有an•an+1•an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=3,公積為27,則a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義“等積數(shù)列”:在一個(gè)數(shù)列中,如果每一個(gè)項(xiàng)與它的后一項(xiàng)的積都為同一個(gè)常數(shù),那末這個(gè)數(shù)列叫做等積數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=2,公積為5,Tn為數(shù)列{an}前n項(xiàng)的積,則T2011=
51006
2
51006
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們對(duì)數(shù)列作如下定義,如果?n∈N*,都有anan+1an+2=k(k為常數(shù)),那么這個(gè)數(shù)列叫做等積數(shù)列,k叫做這個(gè)數(shù)列的公積.已知數(shù)列{an}是等積數(shù)列,且a1=1,a2=2,公積為6,則a1+a2+a3+…+a9=
18
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.
(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;
(2)已知數(shù)列{an}是等和數(shù)列,且a1=2,公和為5,求 a18的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案