9.已知函數(shù)f(x)=lnx+$\frac{2}{x}$+ax-a-2(其中a>0).
(1)當(dāng)a=1時(shí),求f(x)的最小值;
(2)若x∈[1,3]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=1時(shí),f(x)=lnx+$\frac{2}{x}$+x-3,定義域?yàn)椋?,+∞),求出函數(shù)的導(dǎo)數(shù),由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)f(x)的最小值;
(2)當(dāng)a=1時(shí),f(x)≥0恒成立;當(dāng)a≥1且x∈[1,3]時(shí),f(x)≥lnx+$\frac{2}{x}$+x-3≥0恒成立;當(dāng)0<a<1時(shí),求出函數(shù)的導(dǎo)數(shù),由此利用導(dǎo)數(shù)性質(zhì)能求出實(shí)數(shù)a的取值范圍.

解答 解:(1)當(dāng)a=1時(shí),f(x)=lnx+$\frac{2}{x}$+x-3,定義域?yàn)椋?,+∞).
f′(x)=$\frac{1}{x}$-$\frac{1}{{x}^{2}}$+1=$\frac{(x-1)(x+2)}{{x}^{2}}$,
當(dāng)0<x<1時(shí),f′(x)0,
所以,函數(shù)f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
所以,f(x)min=f(1)=0.
(2)①由(1)知,當(dāng)a=1時(shí),f(x)=lnx+$\frac{2}{x}$+x-3≥0恒成立,
所以當(dāng)a≥1且x∈[1,3]時(shí),
f(x)=lnx+$\frac{2}{x}$+ax-a-2≥lnx+$\frac{2}{x}$+x-3≥0恒成立,符合題意.
②當(dāng)0<a<1時(shí),f′(x)=$\frac{1}{x}$-$\frac{2}{{x}^{2}}$+a=$\frac{{ax}^{2}+x-2}{{x}^{2}}$,
方程ax2+x-2=0的判別式△=1+8a>0.
所以方程ax2+x-2=0有兩根,設(shè)為x1,x2,且x1<x2
由x1•x2=-$\frac{2}{a}$<0,知x1<0<x2
所以,0<x<x2時(shí),f′(x)<0,f(x)在(0,x2]上為減函數(shù).
由a•12+1-21.
若1<x2<3,則f(x2)<f(1)=a-1<0,與x∈[1,3]時(shí),f(x)≥0恒成立矛盾.
若x2≥3,則f(3)<f(1)=a-1<0,與x∈[1,3]時(shí),f(x)≥0恒成立矛盾.
所以,0<a<1不符合要求.
綜上,所求實(shí)數(shù)a的取值范圍為[1,+∞).

點(diǎn)評(píng) 本題重點(diǎn)考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),利用函數(shù)的性質(zhì)解決不等式、方程問題.重點(diǎn)考查學(xué)生的代數(shù)推理論證能力.解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.sin77°cos47°-sin13°sin47°的值等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知(1+ax)(1+x)4的展開式中x2的系數(shù)為10,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.用數(shù)字1,2組成四位數(shù),且數(shù)字1,2都至少出現(xiàn)一次,這樣的四位數(shù)共有( 。﹤(gè).
A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出下列命題:
①冪函數(shù)y=x0的圖象為一條直線;
②若冪函數(shù)y=xa的圖象過原點(diǎn),則a>0;
③若冪函數(shù)y=xa(a<0)是奇函數(shù),則y=xa在其定義域內(nèi)一定是減函數(shù);
④冪函數(shù)y=xa圖象不可能出現(xiàn)在第四象限內(nèi),
其中真命題的序號(hào)為②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}}$)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{4}$,且圖象過點(diǎn)M($\frac{π}{3},-1}$)
(1)求f(x)的解析式;       
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,$\frac{π}{2}}$]上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p,q為常數(shù),x∈R,若A∩B={$\frac{1}{2}$}時(shí),求p,q的值和A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)f(x)=loga(x+28)-3(a>0且a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A的橫坐標(biāo)為x0,函數(shù)g(x)=a${\;}^{x-{x_0}}}$+4的圖象恒過定點(diǎn)B,則B點(diǎn)的坐標(biāo)為(-27,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ax3-$\frac{1}{2}$x2(a>0),x∈[0,+∞).
(1)若a=1,求函數(shù)f(x)在[0,1]上的最值;
(2)若函數(shù)y=f'(x)的遞減區(qū)間為A,試探究函數(shù)y=f(x)在區(qū)間A上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案