(2012•貴州模擬)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),O是坐標(biāo)原點(diǎn),C的右頂點(diǎn)和上頂點(diǎn)分別為A、B,且|AB|=3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線x=ky+1與C交于相異兩點(diǎn)M、N,且
OM
ON
=-
31
9
,求k.
分析:(Ⅰ)利用橢圓的焦點(diǎn)坐標(biāo),及|AB|=3,建立方程組,即可求得橢圓C的方程;
(Ⅱ)直線x=ky+1代入橢圓方程,消去x可得一元二次方程,利用韋達(dá)定理及向量條件,即可求得結(jié)論.
解答:解:(Ⅰ)由題意,
a2-b2=1
a2+b2=9
,∴a2=5,b2=4
∴橢圓C的方程為
x2
5
+
y2
4
=1
;
(Ⅱ)直線x=ky+1代入橢圓方程,消去x可得(4k2+5)y2+8ky-16=0
設(shè)M(x1,y1),N(x2,y2),則y1+y2=
-8k
4k2+5
,y1y2=
-16
4k2+5

x1x2=(ky1+1)(ky2+1)=k2y1y2+k(y1+y2)+1=
-20k2+5
4k2+5

OM
ON
=-
31
9

OM
ON
=x1x2+y1y2=
-20k2-11
4k2+5
=-
31
9

∴k2=1,從而k=±1
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查向量知識,考查韋達(dá)定理的運(yùn)用,聯(lián)立方程,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)已知圓C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C2的極坐標(biāo)方程為ρ=2cos(θ+
π
3
)

(Ⅰ)將圓C1的參數(shù)方程化為普通方程,將圓C2的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓C1、C2是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)已知函數(shù)f(x)=
a+blnx
x+1
在點(diǎn)(1,f(1))處的切線方程為x+y=2.
(I)求a,b的值;
(II)對函數(shù)f(x)定義域內(nèi)的任一個(gè)實(shí)數(shù)x,f(x)<
m
x
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)若點(diǎn)P(1,1)為圓x2+y2-6x=0的弦MN的中點(diǎn),則弦MN所在直線方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)(x+1)(1-2x)5展開式中,x3的系數(shù)為
-40
-40
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•貴州模擬)設(shè)集合M={x|x2-x-6<0},N={x|y=log2(x-1)},則M∩N等于( 。

查看答案和解析>>

同步練習(xí)冊答案