如圖,在△ABC內(nèi)取一點(diǎn)P,使∠PBA=∠PCA,作PDABD,PEACE,求證:DE的垂直平分線必經(jīng)過BC的中點(diǎn)M.

解析:如圖,設(shè)LN分別是PB、PC的中點(diǎn),
連結(jié)MD,MEML,MN,DLEN
MLPC,且MLPC;MNPB,且MNPB
又由∠PDB=∠PEC=90°知DLPB,ENPC
因此DLMN    ①     MLEN    ②
并且PLMN為平行四邊形      ……10分
于是∠PLM=∠PNM
DLP=2∠PBA=2∠PCA=∠ENP
故∠DLM=∠DLP+∠PLM=∠ENP+∠PNM=∠ENM    ③
因而由①②③知△DML≌△MEN
DMEM,從而BC的中點(diǎn)MDE的垂直平分線上
DE的垂直平分線必經(jīng)過BC的中點(diǎn)M.       ……20分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(Ⅰ)當(dāng)k=
12
時(shí),求直線PA與平面PBC所成角的大;
(Ⅱ)當(dāng)k取何值時(shí),O在平面PBC內(nèi)的射影恰好為△PBC的重心?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑.
(1)證明:O1A∥平面B1OC;
(2)證明:平面A1ACC1⊥平面B1BCC1;
(3)設(shè)AB=AA1=2,在圓柱OO1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于三棱柱ABC-A1B1C1內(nèi)的概率為P,當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求P的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=kPA,點(diǎn)E、D分別是AC、PC的中點(diǎn),EP⊥底面ABC.
(1)求證:ED∥平面PAB;
(2)求直線AB與平面PAC所成的角;
(3)當(dāng)k取何值時(shí),E在平面PBC內(nèi)的射影恰好為△PBC的重心?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小區(qū)有一塊三角形空地,如圖△ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計(jì)劃在這片空地上進(jìn)行綠化和修建運(yùn)動(dòng)場(chǎng)所,在△ABC內(nèi)的P點(diǎn)處有一服務(wù)站(其大小可忽略不計(jì)),開發(fā)商打算在AC邊上選一點(diǎn)D,然后過點(diǎn)P和點(diǎn)D畫一分界線與邊AB相交于點(diǎn)E,在△ADE區(qū)域內(nèi)綠化,在四邊形BCDE區(qū)域內(nèi)修建運(yùn)動(dòng)場(chǎng)所.現(xiàn)已知點(diǎn)P處的服務(wù)站與AC距離為10米,與BC距離為100米.設(shè)DC=d米,試問d取何值時(shí),運(yùn)動(dòng)場(chǎng)所面積最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案