20.已知圓E:(x+1)2+y2=16,點F(1,0),P是圓E上任意一點,線段PF的垂直平分線和半徑PE相交于Q
(1)求動點Q的軌跡Γ的方程;
(2)若直線y=k(x-1)與(1)中的軌跡Γ交于R,S兩點,問是否在x軸上存在一點T,使得當k變動時,總有∠OTS=∠OTR?說明理由.

分析 (1)連結(jié)QF,運用垂直平分線定理可得,|QP|=|QF|,可得|QE|+|QF|=|QE|+|QP|=4>|EF|=2,由橢圓的定義即可得到所求軌跡方程;
(2)假設存在T(t,0)滿足∠OTS=∠OTR.設R(x1,y1),S(x2,y2),聯(lián)立直線方程和橢圓方程,運用韋達定理和判別式大于0,由直線的斜率之和為0,化簡整理,即可得到存在T(4,0).

解答 解:(1)連結(jié)QF,根據(jù)題意,|QP|=|QF|,
則|QE|+|QF|=|QE|+|QP|=4>|EF|=2,
故動點Q的軌跡Γ是以E,F(xiàn)為焦點,長軸長為4的橢圓.
設其方程為$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,
可知a=2,c=1,∴$b=\sqrt{{a^2}-{c^2}}=\sqrt{3}$,
所以點Q的軌跡Γ的方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;          
(2)假設存在T(t,0)滿足∠OTS=∠OTR.
設R(x1,y1),S(x2,y2)聯(lián)立$\left\{\begin{array}{l}y=k({x-1})\\ 3{x^2}+4{y^2}-12=0\end{array}\right.$,
 得(3+4k2)x2-8k2x+4k2-12=0,
由韋達定理有$\left\{\begin{array}{l}{x_1}+{x_2}=\frac{{8{k^2}}}{{3+4{k^2}}}\\{x_1}{x_2}=\frac{{4{k^2}-12}}{{3+4{k^2}}}\end{array}\right.$①,其中△>0恒成立,
由∠OTS=∠OTR(顯然TS,TR的斜率存在),
故kTS+kTR=0即$\frac{y_1}{{{x_1}-t}}+\frac{y_2}{{{x_2}-t}}=0$②,
由R,S兩點在直線y=k(x-1)上,
故y1=k(x1-1),y2=k(x2-1)代入②得$\frac{{k({{x_1}-1})({{x_2}-t})+k({{x_2}-1})({{x_1}-t})}}{{({{x_1}-t})({{x_2}-t})}}{=}\frac{{k[{2{x_1}{x_2}-({t+1})({{x_1}+{x_2}})+2t}]}}{{({{x_1}-t})({{x_2}-t})}}=0$,
即有2x1x2-(t+1)(x1+x2)+2t=0③,
將①代入③,即有:$\frac{{8{k^2}-24-({t+1})8{k^2}+2t({3+4{k^2}})}}{{3{+}4{k^2}}}=\frac{6t-24}{{3+4{k^2}}}=0$④,
要使得④與k的取值無關,當且僅當“t=4“時成立,
綜上所述存在T(4,0),使得當k變化時,總有∠OTS=∠OTR.

點評 本題考查橢圓的方程的求法,注意運用垂直平分線的性質(zhì)和橢圓的定義,考查存在性問題的解法,注意運用直線方程和橢圓方程聯(lián)立,運用韋達定理和判別式大于0,以及點滿足直線方程,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知圓M:(x-m)2+y2=1的切線l,當l的方程為y=1時,直線l與橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)相切,且橢圓的離心率為$\frac{\sqrt{2}}{2}$.
(1)求橢圓的標準方程;
(2)當m<0時,設S表示三角形的面積,若M的切線l:y=kx+$\sqrt{2}$與橢圓C交于不同的兩點P,Q,當$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{2}{3}$時,求S△MPQ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$x2-mlnx,g(x)=$\frac{1}{2}$x2-2x,F(xiàn)(x)=f(x)-g(x)
(Ⅰ)當m>0,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當m=-1時,試問過點(2,5)可作多少條直線與曲線y=F(x)相切?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在梯形ABCD中,AB∥CD,AB=2CD,E為BC中點,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AD}$,則x+y=$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知$2+\frac{2}{3}={2^2}×\frac{2}{3}\;,\;3+\frac{3}{8}={3^2}×\frac{3}{8}\;,\;4+\frac{4}{15}={4^2}×\frac{4}{15}\;,\;…$,若9+$\frac{a}$=92+$\frac{a}$(a,b為正整數(shù))則a+b=89.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知曲線C的方程是mx2+ny2=1(m>0mn>0),且曲線C過A($\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$),B($\frac{\sqrt{6}}{6}$,$\frac{\sqrt{3}}{3}$)兩點,O為坐標原點
(Ⅰ)求曲線C的方程;
(Ⅱ)設M(x1,y1),N(x2,y2)是曲線C上兩點,且OM⊥ON,求證:直線MN恒與一個定圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≤0}\\{{-x}^{2},x>0}\end{array}\right.$,不等式f(ax2)+f(1-ax)<0對任意的x∈R都成立,則實數(shù)a的取值范圍( 。
A.(0,4)B.(-4,0)C.[0,4)D.[0,4]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=λ(λ>0),不經(jīng)過原點O的直線l:y=kx+m(k>0)與橢圓C相交于不同的兩點M,N,直線OM,MN,ON斜率依次構(gòu)成等比數(shù)列.
(I)求k的值,
(II)若△MON的面積為m2+1,求λ的最小值.并求出此時實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.《幸福賬單》是一檔集情感故事、才藝秀、大型游戲、現(xiàn)場互動等多類元素的綜藝大型互動游戲類節(jié)目.以普通人講述手中賬單背后的故事,并參與因此而量身為其定制的大型游戲,來贏得賬單報銷的形式,講述了人與人之間的真情,展現(xiàn)了當今百姓生活中的萬般幸福之態(tài).某機構(gòu)隨機抽取100個參與節(jié)目的報賬人的賬單總額作為樣本進行分析研究,由此得到如下頻數(shù)分布表:
報賬人的賬單總額(元)[0,1000)[1000,2000)[2000,3000)[3000,4000)[4000,5000)[5000,6000)
 頻數(shù) 2412 32 10 14 8
(Ⅰ)在如表中作出這些數(shù)據(jù)的頻率分布直方圖:
(Ⅱ)若將頻率視為概率,從參與節(jié)目的報賬人中隨機抽取3位(看作有放回的抽樣),求賬單總額在[3000,4000)內(nèi)的報賬人數(shù)X的分布列、數(shù)學期望、與方差.

查看答案和解析>>

同步練習冊答案