( 12分)四邊形ABCD,,,,

    (1)若,試求滿足的關(guān)系式

    (2)在滿足(1)的同時(shí),若,求的值以及四邊形ABCD的面積

 

 

【答案】

解:(1)由已知可得,,

,可知

(2)由已知可得,

可得

(3)由(1)(2)可得

                  ①

       ②

由①②聯(lián)立可得

易求得>0所以?xún)蓷l曲線相交。

另解:的圓心(-2,1)到直線的距離

,所以?xún)蓷l曲線相交

原編題

(2)在滿足(1)的同時(shí),若,求的值以及四邊形ABCD的面積

 

由(1)可知

所以

當(dāng)時(shí),由

可得=16

當(dāng)時(shí),由

可得=16

綜上可知=

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O、A、B、C為空間四邊形四個(gè)頂點(diǎn),點(diǎn)M、N分別是邊OA、BC的中點(diǎn),且
OA
=
a
,
OB
=
b
,
OC
=
c
,用
a
,
b
,
c
表示向量
MN
為( 。
A、
1
2
a
+
c
-
b
B、
1
2
a
+
b
-
c
C、
1
2
c
+
b
-
a
D、
1
2
a
+
b
+
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E、F分別是棱AA′,CC′的中點(diǎn),過(guò)直線EF的平面分別與棱BB′、DD′交于M、N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD′B′;
②當(dāng)且僅當(dāng)x=
12
時(shí),四邊形MENF的面積最;
③四邊形MENF周長(zhǎng)l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′-MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號(hào)為
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,E,F(xiàn)分別是棱AA',CC'的中點(diǎn),過(guò)直線E,F(xiàn)的平面分別與棱BB'、DD'交于M,N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①平面MENF⊥平面BDD'B';
②當(dāng)且僅當(dāng)x=
1
2
時(shí),四邊形MENF的面積最。
③四邊形MENF周長(zhǎng)L=f(x),x∈[0,1]是單調(diào)函數(shù);
④四棱錐C'-MENF的體積V=h(x)為常函數(shù);
以上命題中假命題的序號(hào)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方體ABCD-A′B′C′D′的棱長(zhǎng)為1,E、F 分別是棱AA',CC'的中點(diǎn),過(guò)直線E、F的平面分別與棱BB′,DD′交于M、N,設(shè)BM=x,x∈[0,1],給出以下四個(gè)命題:
①當(dāng)且僅當(dāng)x=0時(shí),四邊形MENF的周長(zhǎng)最大;
②當(dāng)且僅當(dāng)x=
1
2
時(shí),四邊形MENF的面積最小;
③四棱錐C′-MENF的體積V=h(x)為常函數(shù);
④正方體ABCD-A′B′C′D′被截面MENF平分成等體積的兩個(gè)多面體.
以上命題中正確命題的個(gè)數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆海南省高二上學(xué)期期末文科數(shù)學(xué)試題(解析版) 題型:解答題

(本小題滿分12分)已知A,B兩點(diǎn)是橢圓 與坐標(biāo)軸正半軸的兩個(gè)交點(diǎn).

(1)設(shè)為參數(shù),求橢圓的參數(shù)方程;

(2)在第一象限的橢圓弧上求一點(diǎn)P,使四邊形OAPB的面積最大,并求此最大值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案