12.某高校大一新生的五名同學(xué)打算參加學(xué)校組織的“小草文學(xué)社”、“街舞俱樂部”、“足球之家”、“騎行者”四個(gè)社團(tuán).若毎個(gè)社團(tuán)至少一名同學(xué)參加,每名同學(xué)至少參加一個(gè)社團(tuán)且只能參加一個(gè)社團(tuán),其中同學(xué)甲不參加“街舞俱樂部”,則這五名同學(xué)不同的參加方法的種數(shù)為(  )
A.160B.180C.200D.220

分析 根據(jù)題意,分析可得,必有2人參加同一個(gè)社團(tuán),分2步討論,首先分析甲,因?yàn)榧撞粎⒓印敖治杈銟凡俊,則其有3種情況,再分析其他4人,此時(shí)分甲單獨(dú)參加一個(gè)社團(tuán)與甲與另外1人參加同一個(gè)社團(tuán),2種情況討論,由加法原理,可得第二步的情況數(shù)目,進(jìn)而由乘法原理,計(jì)算可得答案.

解答 解:根據(jù)題意,分析可得,必有2人參加同一個(gè)社團(tuán),
首先分析甲,甲不參加“街舞俱樂部”,則其有3種情況,
再分析其他4人,若甲與另外1人參加同一個(gè)社團(tuán),則有A44=24種情況,
若甲是1個(gè)人參加一個(gè)社團(tuán),則有C42•A33=36種情況,
則除甲外的4人有24+36=60種情況;
故不同的參加方法的種數(shù)為3×60=180種;
故選:B.

點(diǎn)評(píng) 本題考查排列、組合的綜合應(yīng)用,涉及分步進(jìn)行與分類討論的綜合運(yùn)用,注意要全面分析,做到有條理并且不重不漏.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}(1-x)|,x<1}\\{-{x}^{2}+4x-2,x≥1}\end{array}\right.$則方程f(x+$\frac{1}{x}$-2)=1的實(shí)根個(gè)數(shù)為( 。
A.8B.7C.6D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)在函數(shù)y=x2-10x的圖象上,等差數(shù)列{bn}滿足bn+bn+1=an(n∈N*),其前n項(xiàng)和為Tn,則下列結(jié)論正確的是( 。
A.Sn<2TnB.b4=0C.T7>b7D.T5=T6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的上下焦點(diǎn)分別為F1,F(xiàn)2,離心率為$\frac{1}{2}$,P為C上動(dòng)點(diǎn),且滿足$\overrightarrow{{F_2}P}=λ\overrightarrow{PQ}(λ>0),|\overrightarrow{PQ}|=|\overrightarrow{P{F_1}}$|,△QF1F2面積的最大值為4.
(Ⅰ)求Q點(diǎn)軌跡E的方程和橢圓C的方程;
(Ⅱ)直線y=kx+m(m>0)與橢圓C相切且與曲線E交于M,N兩點(diǎn),求${S_{△{F_{\;}}_1MN}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)z滿足$\frac{1+i}{z}=\frac{i}{1+2i}(i$為虛數(shù)單位),則z=( 。
A.3+iB.3-iC.-3+iD.-3-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)a>b>c且$\frac{1}{a-b}+\frac{1}{b-c}≥\frac{m}{a-c}$恒成立,則m的取值范圍是(-∞,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比為$\frac{3}{2}$.
(1)若${S_4}=\frac{65}{24}$,求a1
(2)若a1=2,${c_n}=\frac{1}{2}{a_n}+bn$,且c2,c4,c5成等差數(shù)列,求b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.cos(-375°)的值為( 。
A.$\frac{{\sqrt{2}-\sqrt{6}}}{4}$B.$\frac{{\sqrt{6}-\sqrt{2}}}{4}$C.$\frac{{\sqrt{6}+\sqrt{2}}}{4}$D.$-\frac{{\sqrt{6}-\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知一個(gè)幾何體的三視圖如圖所示(單位:cm).則該幾何體的體積為8πcm3

查看答案和解析>>

同步練習(xí)冊答案