已知分別是橢圓的左,右頂點,點在橢圓 上,且直線與直線的斜率之積為

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點為橢圓上除長軸端點外的任一點,直線,與橢圓的右準(zhǔn)線分別交于點
①在軸上是否存在一個定點,使得?若存在,求點的坐標(biāo);若不存在,說明理由;
②已知常數(shù),求的取值范圍.

(1);(2)①存在點的坐標(biāo)為,②.

解析試題分析:(1)利用題目條件建立關(guān)于a,b,c的方程組,解方程組即可;
(2)①對于存在性問題,可以先假設(shè)點存在,然后根據(jù)以及點P在橢圓上直線與橢圓的右準(zhǔn)線分別交于點,等相關(guān)條件建立方程,看看點E的橫坐標(biāo)是不是定值,如果是即為所求,如果不是也就說明了不存在;②利用向量的坐標(biāo)運算,計算, ,進而求出的表達式,在利用函數(shù)知識求取值范圍.

試題解析:(1)由題意得,
 , ∴,
由點在橢圓C上,則有:
 ,                2分
由以上兩式可解得
∴橢圓方程為.         4分
(2)①橢圓右準(zhǔn)線的方程為.                                  5分
假設(shè)存在一個定點,使得.設(shè)點().
直線的方程為,令,,∴點坐標(biāo)為
直線的方程為,令,
∴點坐標(biāo)為.                     7分
,則,∵ ,,
.             9分
∵點在橢圓上,∴,∴ ,代入上式,得 ,
,∴點的坐標(biāo)為.                       11分
②∵, ,

,∴
 .                    13分
設(shè)函數(shù),定義域為,
當(dāng)時,即時,上單調(diào)遞減,的取值范圍為
當(dāng)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線的焦點與橢圓的焦點重合,且該橢圓的長軸長為,是橢圓上的的動點.
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足:,直線的斜率之積為,求證:存在定點,
使得為定值,并求出的坐標(biāo);
(3)若在第一象限,且點關(guān)于原點對稱,點軸的射影為,連接 并延長交橢圓于
,求證:以為直徑的圓經(jīng)過點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C=1(ab>0)上任一點P到兩個焦點的距離的和為2,P與橢圓長軸兩頂點連線的斜率之積為-.設(shè)直線l過橢圓C的右焦點F,交橢圓C于兩點A(x1,y1),B(x2,y2).
(1)若 (O為坐標(biāo)原點),求|y1y2|的值;
(2)當(dāng)直線l與兩坐標(biāo)軸都不垂直時,在x軸上是否總存在點Q,使得直線QA,QB的傾斜角互為補角?若存在,求出點Q坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若=8,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,焦距為的橢圓的兩個頂點分別為,且與n,共線.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓有兩個不同的交
,且原點總在以為直徑的圓的內(nèi)部,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為、,求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓:的左焦點為,且過點.

(1)求橢圓的方程;
(2)設(shè)過點P(-2,0)的直線與橢圓E交于A、B兩點,且滿足.
①若,求的值;
②若M、N分別為橢圓E的左、右頂點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定點,曲線C是使為定值的點的軌跡,曲線過點.
(1)求曲線的方程;
(2)直線過點,且與曲線交于,當(dāng)的面積取得最大值時,求直線的方程;
(3)設(shè)點是曲線上除長軸端點外的任一點,連接、,設(shè)的角平分線交曲線的長軸于點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)已知點,過點的直線與過點的直線相交于點,設(shè)直線的斜率為,直線的斜率為,如果,求點的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長線相交于點,則.

查看答案和解析>>

同步練習(xí)冊答案