12.我國(guó)對(duì)PM2.5采用如下標(biāo)準(zhǔn):
PM2.5日均值m(微克/立方米)空氣質(zhì)量等級(jí)
m<35一級(jí)
35≤m≤75二級(jí)
m>75超標(biāo)
某地4月1日至15日每天的PM2.5監(jiān)測(cè)數(shù)據(jù)如莖葉圖所示.
(Ⅰ)期間劉先生有兩天經(jīng)過(guò)此地,這兩天此地PM2.5監(jiān)測(cè)數(shù)據(jù)均未超標(biāo).請(qǐng)計(jì)算出這兩天空氣質(zhì)量恰好有一天為一級(jí)的概率;
(Ⅱ)從所給15天的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測(cè)數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列及期望.

分析 (Ⅰ)記“他這兩天此地PM2.5監(jiān)測(cè)數(shù)據(jù)均未超標(biāo)且空氣質(zhì)量恰好有一天為一級(jí)”為事件B,利用古典概型概率公式求解即可.
(Ⅱ)ξ的可能取值為0,1,2,3 求出概率得到分布列,然后求解期望.

解答 解:(Ⅰ)記“他這兩天此地PM2.5監(jiān)測(cè)數(shù)據(jù)均未超標(biāo)且空氣質(zhì)量恰好有一天為一級(jí)”
為事件B,P(B)=$\frac{{C}_{5}^{1}•{C}_{5}^{1}}{{C}_{10}^{2}}=\frac{5}{9}$   …(5分)
(Ⅱ)ξ的可能取值為0,1,2,3    …(6分)
 P(ξ=0)=$\frac{{C}_{10}^{3}}{{C}_{15}^{3}}=\frac{24}{91}$    
P(ξ=1)=$\frac{{C}_{10}^{2}•{C}_{5}^{1}}{{C}_{15}^{3}}=\frac{45}{91}$ 
 P(ξ=2)=$\frac{{C}_{10}^{1}•{C}_{5}^{2}}{{C}_{15}^{3}}=\frac{20}{91}$       
P(ξ=3)=$\frac{{C}_{5}^{3}}{{C}_{15}^{3}}=\frac{2}{91}$  …(10分)
其分布列為:

ξ0123
P$\frac{24}{91}$$\frac{45}{91}$$\frac{20}{91}$$\frac{2}{91}$
Eξ=$0×\frac{24}{91}+1×\frac{45}{91}+2×\frac{20}{91}+3×\frac{2}{91}$=1…(12分)

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的分布列以及期望的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知cosα=$\frac{3}{5}$,且α是第四象限,求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.A={1,2,3},B={-1,2,-3},A∩B=( 。
A.{2}B.2C.{-3,-1,1,2,3}D.φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.以下命題中,正確命題是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow$|,則$\overrightarrow{a}$=$\overrightarrow$B.若$\overrightarrow{a}$,$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$
C.若$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow$=0,則$\overrightarrow{a}$=$\overrightarrow$D.若|$\overrightarrow{a}$|=|$\overrightarrow$|且$\overrightarrow{a}∥\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,$\frac{2{S}_{n}}{n}$=an+1-$\frac{(n+1)(n+2)}{3}$,n∈N*
(1)證明:數(shù)列{$\frac{{a}_{n}}{n}$}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)當(dāng)x≥1時(shí),比較lnx與x2-x的大小關(guān)系,并證明:$\frac{2}{ln{a}_{n+1}}$+$\frac{2}{ln{a}_{n+2}}$+…+$\frac{2}{ln{a}_{n+2015}}$>$\frac{2015}{n(n+2015)}$,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.M(x0,y0)為圓x2+y2=a2(a>0)內(nèi)異于圓心的一點(diǎn),則直線x•x0+y•y0=a2與該圓的位置關(guān)系為( 。
A.相離B.相交C.相切D.相切或相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a為實(shí)數(shù),函數(shù)f(x)=(x2+1)(x+a).
(1)若f′(-1)=0,求函數(shù)y=f(x)在[-$\frac{3}{2}$,1]上的極大值和極小值;
(2)若函數(shù)f(x)的圖象上有與x軸平行的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.橢圓C的中心在原點(diǎn)、焦點(diǎn)在x軸上,橢圓C的兩個(gè)焦點(diǎn)及短軸的兩個(gè)端點(diǎn)恰是一個(gè)面積為8的正方形的四個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)直線y=kx+b與橢圓C恒有兩個(gè)橫坐標(biāo)不同的交點(diǎn)A、B,
①寫出滿足上述要求的充要條件(用含k、b的式子表示);
②若線段AB的垂直平分線與x軸交于點(diǎn)P(x0,0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c且cosC=$\frac{2\sqrt{7}}{7}$,ab=12$\sqrt{7}$.
(1)求△ABC的面積S;
(2)若a=6,求角B的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案