【題目】從某學(xué)校高三年級(jí)共名男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成八組,第一組;第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

)估計(jì)這所學(xué)校高三年級(jí)全體男生身高以上(含)的人數(shù).

)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(鉛筆作圖并用中性筆描黑).

)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為、,求滿(mǎn)足的事件概率.

【答案】(1)9人;(2)見(jiàn)解析;(3)

【解析】試題分析:(1)由頻率分布直方圖可得前五組頻率,進(jìn)而可得后三組頻率和人數(shù),又可得后三組的人數(shù),可得平均身高;
(2)易得后三組的,可得頻率分布直方圖;
(3)由()知身高在內(nèi)的人數(shù)為人,

設(shè),,。身高為的人數(shù)為人,

設(shè)為,.,列舉可得總的基本事件共15種情況,事件“”所包含的基本事件個(gè)數(shù)有6+1=7,由概率公式可得.

試題解析:)由頻率分布直方圖知,

前五組頻率為,

后三組頻率為,人數(shù)為人,

這所學(xué)校高三男生身高在以上(含)的人數(shù)為人.

)由頻率分布直方圖得第八組頻率為,人數(shù)為人,

設(shè)第六組人數(shù)為,則第七組人數(shù)為,又,所以

即第六組人數(shù)為,第七組人數(shù)為人,頻率分別為,,

頻率除以組距分別等于,見(jiàn)圖.

)由()知身高在內(nèi)的人數(shù)為人,

設(shè),,身高為的人數(shù)為人,

設(shè)為,

,時(shí),有,,共六種情況.

時(shí),有共一種情況.

,分別在,內(nèi)時(shí),

,,,,,種情況.

所以基本事件的總數(shù)為種.

事件所包含的基本事件個(gè)數(shù)有種,故

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:①殘差可用來(lái)判斷模型擬合的效果;

②設(shè)有一個(gè)回歸方程,變量x增加一個(gè)單位時(shí),y平均增加5個(gè)單位;

③線(xiàn)性回歸方程必過(guò) ;

④在一個(gè)2×2列聯(lián)表中,由計(jì)算得=13.079,則有99%的把握確認(rèn)這兩個(gè)變量間有關(guān)系(其中);

其中錯(cuò)誤的個(gè)數(shù)是(

A. 0 B. 1 C. 2 D. 3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解高一實(shí)驗(yàn)班的數(shù)學(xué)成績(jī),采用抽樣調(diào)查的方式,獲取了位學(xué)生在第一學(xué)期末的數(shù)學(xué)成績(jī)數(shù)據(jù),樣本統(tǒng)計(jì)結(jié)果如下表:

分組

頻數(shù)

頻率

合計(jì)

(1)求的值和實(shí)驗(yàn)班數(shù)學(xué)平均分的估計(jì)值;

(2)如果用分層抽樣的方法從數(shù)學(xué)成績(jī)小于分的學(xué)生中抽取名學(xué)生,再?gòu)倪@名學(xué)生中選人,求至少有一個(gè)學(xué)生的數(shù)學(xué)成績(jī)是在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求f(2),f(x);

(2)證明:函數(shù)f(x)在[1,17]上為增函數(shù);

(3)試求函數(shù)f(x)在[1,17]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=xR),gx=2a-1

1)求函數(shù)fx的單調(diào)區(qū)間與極值

2)若fx≥gx對(duì)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)離心率為 的橢圓E: + =1(a>b>0)的左、右焦點(diǎn)為F1 , F2 , 點(diǎn)P是E上一點(diǎn),PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為 ﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線(xiàn)y=x+2,A、B在橢圓E上,若矩形ABCD的周長(zhǎng)為 ,求直線(xiàn)AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用空間向量解決下列問(wèn)題:如圖,在斜三棱柱中, 的中點(diǎn), ⊥平面, ,

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為F,點(diǎn)B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn) 的直線(xiàn)交橢圓C于M,N兩點(diǎn),交直線(xiàn)x=2于點(diǎn)P,設(shè) , ,求證:λ+μ為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱錐ABCD中,AB⊥平面BCD,CD⊥BD .

1)求證:CD⊥平面ABD

2)若ABBDCD1,MAD中點(diǎn),求三棱錐AMBC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案