【題目】已知橢圓C: 的離心率為 ,右焦點(diǎn)為F,點(diǎn)B(0,1)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn) 的直線交橢圓C于M,N兩點(diǎn),交直線x=2于點(diǎn)P,設(shè) , ,求證:λ+μ為定值.

【答案】解:(Ⅰ)由點(diǎn)B(0,1)在橢圓C: 上,則 ,即b=1.
又橢圓C的離心率為 ,則 ,
由a2=b2+c2 , 得
∴橢圓C的方程為
(Ⅱ)證明:由已知得F(1,0),直線MN的斜率存在.
設(shè)直線MN的方程為y=k(x﹣1),M(x1 , y1),N(x2 , y2),則P(2,k).
, ,得 ,
,.
聯(lián)立 得(1+2k2)x2﹣4k2x+2k2﹣2=0.

= =0,
∴λ+μ=0為定值
【解析】(Ⅰ)由題意b=1,利用橢圓的離心率即可求得a的值,求得橢圓方程;(Ⅱ)設(shè)直線MN的方程為y=k(x﹣1),代入橢圓方程,利用韋達(dá)定理及向量的坐標(biāo)運(yùn)算,即可證明λ+μ=0為定值.
【考點(diǎn)精析】本題主要考查了橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x-1x2-2,試?yán)没境醯群瘮?shù)的圖象,判斷f(x)有幾個(gè)零點(diǎn),并利用零點(diǎn)存在性定理確定各零點(diǎn)所在的區(qū)間(各區(qū)間長度不超過1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校高三年級(jí)共名男生中隨機(jī)抽取名測(cè)量身高,測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成八組,第一組;第二組,,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,若第一組與第八組人數(shù)相同,第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

)估計(jì)這所學(xué)校高三年級(jí)全體男生身高以上(含)的人數(shù).

)求第六組、第七組的頻率并補(bǔ)充完整頻率分布直方圖(鉛筆作圖并用中性筆描黑).

)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為、,求滿足的事件概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex , 下列命題正確的有 . (寫出所有正確命題的編號(hào))
①f(x)是奇函數(shù);
②f(x)在R上是單調(diào)遞增函數(shù);
③方程f(x)=x2+2x有且僅有1個(gè)實(shí)數(shù)根;
④如果對(duì)任意x∈(0,+∞),都有f(x)>kx,那么k的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知從橢圓的一個(gè)焦點(diǎn)看兩短軸端點(diǎn)所成視角為,且橢圓經(jīng)過.

(1)求橢圓的方程;

(2)是否存在實(shí)數(shù),使直線與橢圓有兩個(gè)不同交點(diǎn),且為坐標(biāo)原點(diǎn)),若存在,求出的值.不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=2 cos2x﹣2sinxcosx﹣ 的圖象向左平移t(t>0)個(gè)單位,所得圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則t的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的上下兩個(gè)焦點(diǎn)分別為 ,過點(diǎn)軸垂直的直線交橢圓、兩點(diǎn), 的面積為,橢圓的離心力為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)已知為坐標(biāo)原點(diǎn),直線 軸交于點(diǎn),與橢圓交于, 兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線性回歸方程得到的估計(jì)數(shù)據(jù)與4月份所選5天的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的. 請(qǐng)根據(jù)4月7,4月15日與4月21日這三天的數(shù)據(jù),求出關(guān)于的線性回歸方程,并判定所得的線性回歸方程是否可靠?

參考公式: ,

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f

1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;

2)在(1)的條件下,求函數(shù)的圖象在點(diǎn)處的切線方程;

3)若不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案