7.若(ax+y)7的展開式中xy6的系數(shù)為1,則a=$\frac{1}{7}$.

分析 利用二項式定理展開式的通項公式即可得出.

解答 解:(ax+y)7的展開式中通項公式:Tr+1=${∁}_{7}^{r}(ax)^{7-r}$yr
令r=6,則Tr+1=${∁}_{7}^{6}$•ax•y6
∵xy6的系數(shù)為1,則7a=1,解得a=$\frac{1}{7}$.
故答案為:$\frac{1}{7}$.

點評 本題考查了二項式定理的通項公式應(yīng)用,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,∠ABC=∠BAD=90°,BC=2$\sqrt{2}$,AP=AD=AB=$\sqrt{2}$.
(Ⅰ)設(shè)平面PAD與平面PBC的交線為l,證明BC∥l;
(Ⅱ)試在棱PA上確定一點E,使得PC∥平面BDE,并求出此時$\frac{AE}{EP}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)min{p,q,r}為表示p,q,r三者中較小的一個,若函數(shù)f(x)=min{x+1,-2x+7,x2-x+1},則不等式f(x)>1的解集為(  )
A.(0,2)B.(-∞,0)C.(1,+∞)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)等差數(shù)列{an}的前n項和為Sn.且S10=3S5+20,a2n=2an
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=$\frac{2n+1}{{{{({{a_{n+1}}})}^2}a_n^2}}$,數(shù)列{bn}的前n項和Tn,證明:對任意n∈N*,都有$\frac{3}{64}$≤Tn<$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-a|,g(x)=f(x)+f(x+2).
(Ⅰ)當a=-1時,解不等式:f(x)≥4-|2x-1|;
(Ⅱ)若關(guān)于x的不等式f(x)≤1的解集為[0,2],求證:g(x)≥2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=$\frac{x}{1-x}$+$\sqrt{x+1}$的定義域是( 。
A.[-1,+∞)B.(-∞,-1)C.(-∞,+∞)D.[-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是減函數(shù),則a的取值范圍是[$\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c,已知a=7,c=5,則$\frac{sinA}{sinC}$的值是( 。
A.$\frac{7}{5}$B.$\frac{5}{7}$C.$±\frac{7}{12}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.下列說法中,正確說法的個數(shù)是③.
①△ABC為直角三角形是其三邊關(guān)系a2+b2=c2的必要條件;②tanA=tanB是A=B的充分條件;③x2-2x-3=0是x=3的必要條件.

查看答案和解析>>

同步練習冊答案