【題目】某公司準備將萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如表所示:
且的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設材料的成本有關,在生產的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產品的價格調整,兩次調整相互獨立且調整的概率分別為和.若乙項目產品價格一年內調整的次數(shù)(次數(shù))與的關系如表所示:
(Ⅰ)求的值;
(Ⅱ)求的分布列;
(Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,求的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最大值和最小值.設
(1)求的值
(2)若不等式在上有解,求實數(shù)的取值范圍;
(3)若有三個不同的實數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年,我國施行個人所得稅專項附加扣除辦法,涉及子女教育、繼續(xù)教育、大病醫(yī)療、住房貸款利息或者住房租金、贍養(yǎng)老人等六項專項附加扣除.某單位老、中、青員工分別有72,108,120人,現(xiàn)采用分層抽樣的方法,從該單位上述員工中抽取25人調查專項附加扣除的享受情況.
項目 員工 | A | B | C | D | E | F |
子女教育 | ○ | ○ | × | ○ | × | ○ |
繼續(xù)教育 | × | × | ○ | × | ○ | ○ |
大病醫(yī)療 | × | × | × | ○ | × | × |
住房貸款利息 | ○ | ○ | × | × | ○ | ○ |
住房租金 | × | × | ○ | × | × | × |
贍養(yǎng)老人 | ○ | ○ | × | × | × | ○ |
(1)應從老、中、青員工中分別抽取多少人?
(2)抽取的25人中,享受至少兩項專項附加扣除的員工有6人,分別記為A,B,C,D,E,F.享受情況如下表,其中“○”表示享受,“×”表示不享受.現(xiàn)從這6人中隨機抽取2人接受采訪.
①試用所給字母列舉出所有可能的抽取結果;
②設M為事件“抽取的2人享受的專項附加扣除至少有一項相同”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2lnx﹣x.
(I)寫出函數(shù)f(x)的定義域,并求其單調區(qū)間;
(II)已知曲線y=f(x)在點(x0,f(x0))處的切線為l,且l在y軸上的截距是﹣2,求x0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市有一特色酒店由一些完全相同的帳篷構成.每座帳篷的體積為立方米,且分上下兩層,其中上層是半徑為(單位:米)的半球體,下層是半徑為米,高為米的圓柱體(如圖).經(jīng)測算,上層半球體部分每平方米建造費用為2千元,下方圓柱體的側面、隔層和地面三個部分平均每平方米建造費用為3千元,設每座帳篷的建造費用為千元.
參考公式:球的體積,球的表面積,其中為球的半徑.
(1)求關于的函數(shù)解析式,并指出該函數(shù)的定義域;
(2)當半徑為何值時,每座帳篷的建造費用最小,并求出最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為F1、F2,離心率為,且經(jīng)過點.
(1)求橢圓C的方程;
(2)動直線與橢圓C相交于點M,N,橢圓C的左右頂點為,直線與相交于點,證明點在定直線上,并求出定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三角形面積為S=(a+b+c)r,a,b,c為三角形三邊長,r為三角形內切圓半徑,利用類比推理,可以得出四面體的體積為 ( )
A. V=abc B. V=Sh
C. V=(ab+bc+ac)·h(h為四面體的高) D. V=(S1+S2+S3+S4)·r(其中S1,S2,S3,S4分別為四面體四個面的面積,r為四面體內切球的半徑,設四面體的內切球的球心為O,則球心O到四個面的距離都是r)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com