【題目】已知函數(shù)fx)=2lnxx

(I)寫出函數(shù)fx)的定義域,并求其單調(diào)區(qū)間;

(II)已知曲線yfx)在點(x0fx0))處的切線為l,且l在y軸上的截距是﹣2,求x0

【答案】(Ⅰ)定義域為(0,+∞), 單調(diào)遞增區(qū)間是(0,2),單調(diào)遞減區(qū)間是(2,+∞);(Ⅱ)1.

【解析】

)由對數(shù)真數(shù)大于零求得函數(shù)的定義域,利用導數(shù)求得函數(shù)的單調(diào)區(qū)間.)利用切點的橫坐標求得斜率,由點斜式寫出切線方程,令縱截距為列方程,解方程求得的值.

解:(Ⅰ)函數(shù)y=f(x)的定義域為:(0,+∞).

∵f(x)=2lnx﹣x,∴

令f'(x)=0,則x=2.

當x在(0,+∞)上變化時,f'(x),f(x)的變化情況如下表

∴函數(shù)y=f(x)的單調(diào)遞增區(qū)間是(0,2),單調(diào)遞減區(qū)間是(2,+∞).

(Ⅱ)由題意可知:f(x0)=2lnx0﹣x0,

曲線y=f(x)在點(x0,f(x0))處的切線的斜率為

∴切線方程為:

∵切線方程為y=kx﹣2,

∴2lnx0﹣2=﹣2.

∴x0=1.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】漢字聽寫大會不斷創(chuàng)收視新高,為了避免“書寫危機”,弘揚傳統(tǒng)文化,某市大約10萬名市民進行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個數(shù)全部在160到184之間,將測試結果按如下方式分成六組:第1組,第2組,第6組,如圖是按上述分組方法得到的頻率分布直方圖.

若電視臺記者要從抽取的市民中選1人進行采訪,求被采訪人恰好在第2組或第6組的概率;

試估計該市市民正確書寫漢字的個數(shù)的平均數(shù)與中位數(shù);

已知第4組市民中有3名男性,組織方要從第4組中隨機抽取2名市民組成弘揚傳統(tǒng)文化宣傳隊,求至少有1名女性市民的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關,為了確定下一個時段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對某種雞的時段產(chǎn)蛋量(單位:) 和時段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個雞舍的時段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中的統(tǒng)計量的值.

其中.

(1)根據(jù)散點圖判斷,哪一個更適宜作為該種雞的時段產(chǎn)蛋量關于雞舍時段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)

(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關于的回歸方程;

(3)已知時段投入成本的關系為,當時段控制溫度為時,雞的時段產(chǎn)蛋量及時段投入成本的預報值分別是多少?

附:①對于一組具有線性相關關系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中, , 的中點,以為折痕將向上折起, 變?yōu)?/span>,且平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(2,0),且圓C:x2+y2﹣6x+4y+4=0.

(Ⅰ)當直線過點P且與圓心C的距離為1時,求直線的方程;

(Ⅱ)設過點P的直線與圓C交于A、B兩點,若|AB|=4,求以線段AB為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司準備將萬元資金投入到市環(huán)保工程建設中,現(xiàn)有甲、乙兩個建設項目選擇,若投資甲項目一年后可獲得的利潤(萬元)的概率分布列如表所示:

的期望;若投資乙項目一年后可獲得的利潤(萬元)與該項目建設材料的成本有關,在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進行產(chǎn)品的價格調(diào)整,兩次調(diào)整相互獨立且調(diào)整的概率分別為.若乙項目產(chǎn)品價格一年內(nèi)調(diào)整的次數(shù)(次數(shù))與的關系如表所示:

Ⅰ)求的值;

Ⅱ)求的分布列;

Ⅲ)若該公司投資乙項目一年后能獲得較多的利潤,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】合肥一中、六中為了加強交流,增進友誼,兩校準備舉行一場足球賽,由合肥一中版畫社的同學設計一幅矩形宣傳畫,要求畫面面積為,畫面的上、下各留空白,左、右各留空白.

(1)如何設計畫面的高與寬的尺寸,才能使宣傳畫所用紙張面積最小?

(2)設畫面的高與寬的比為,且,求為何值時,宣傳畫所用紙張面積最小?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽是我國魏晉時期著名的數(shù)學家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲乙兩地相距海里,某貨輪勻速行駛從甲地運輸貨物到乙地,運輸成本包括燃料費用和其他費用.已知該貨輪每小時的燃料費與其速度的平方成正比,比例系數(shù)為,其他費用為每小時元,且該貨輪的最大航行速度為海里/小時.

)請將該貨輪從甲地到乙地的運輸成本表示為航行速度(海里/小時)的函數(shù).

)要使從甲地到乙地的運輸成本最少,該貨輪應以多大的航行速度行駛?

查看答案和解析>>

同步練習冊答案