17.已知函數(shù)f(x)=|x+6|-|m-x|(m∈R)
(Ⅰ)當(dāng)m=3時(shí),求不等式f(x)≥5的解集;
(Ⅱ)若不等式f(x)≤7對(duì)任意實(shí)數(shù)x恒成立,求m的取值范圍.

分析 (1)通過(guò)討論x的范圍,得到各個(gè)區(qū)間上的x的范圍,取并集即可;(2)根據(jù)絕對(duì)值的幾何意義求出m的范圍即可.

解答 解:(1)當(dāng)m=3時(shí),f(x)≥5即|x+6|-|x-3|≥5,
①當(dāng)x<-6時(shí),得-9≥5,所以x∈ϕ;
②當(dāng)-6≤x≤3時(shí),得x+6+x-3≥5,即x≥1,所以1≤x≤3;
③當(dāng)x>3時(shí),得9≥5,成立,所以x>3;
故不等式f(x)≥5的解集為{x|x≥1}.
(Ⅱ)因?yàn)閨x+6|-|m-x|≤|x+6+m-x|=|m+6|,
由題意得|m+6|≤7,
則-7≤m+6≤7,
解得-13≤m≤1.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查絕對(duì)值的幾何意義,分類討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖所示,已知點(diǎn)A(1,1),單位圓上半部分上的點(diǎn)B滿足$\overrightarrow{OA}$$•\overrightarrow{OB}$=0,則向量$\overrightarrow{OB}$的坐標(biāo)為($-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.正12邊形A1A2…A12內(nèi)接于半徑為1的圓,從$\overrightarrow{{A}_{1}{A}_{2}}$、$\overrightarrow{{A}_{2}{A}_{3}}$、$\overrightarrow{{A}_{3}{A}_{4}}$、…、$\overrightarrow{{A}_{12}{A}_{1}}$這12個(gè)向量中任取兩個(gè),記它們的數(shù)量積為S,則S的最大值等于$\sqrt{3}-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若數(shù)列{an}滿足${a_{n+1}}=2{a_n}({a_n}≠0,n∈{N^*})$,且a2與a4的等差中項(xiàng)是5,則a1+a2+…+an等于(  )
A.2nB.2n-1C.2n-1D.2n-1-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.$\frac{{{{(x-1)}^6}}}{x}$的展開式中,x2項(xiàng)的系數(shù)為-20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知a、b∈R+,則下列各數(shù)a、b、$\sqrt{ab}$、$\frac{a+b}{2}$、$\frac{2ab}{a+b}$、$\sqrt{\frac{{a}^{2}+^{2}}{2}}$從小到大的順序是a≤$\frac{2ab}{a+b}$≤$\sqrt{ab}$≤$\frac{a+b}{2}$≤$\sqrt{\frac{{a}^{2}+^{2}}{2}}$≤b.
(a≤b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,若2$\overrightarrow{BC}$•$\overrightarrow{BA}$=b2-(a+c)2
(1)求角B的大;
(2)已知b=2$\sqrt{3}$,當(dāng)代數(shù)式2$\sqrt{3}$cos2$\frac{A}{2}$-sin($\frac{4π}{3}$-C)取得最大值時(shí),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.要得到函數(shù)f (x)=sin2x的導(dǎo)函數(shù) f′(x)的圖象,只需將f (x)的圖象(  )
A.向左平移$\frac{π}{2}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)
B.向左平移$\frac{π}{2}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來(lái)的$\frac{1}{2}$倍(橫坐標(biāo)不變)
C.向左平移$\frac{π}{4}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的$\frac{1}{2}$倍(橫坐標(biāo)不變)
D.向左平移$\frac{π}{4}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(橫坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.將5名教師分到3個(gè)班任課,每班至少分1名,有多少種不同的分法?

查看答案和解析>>

同步練習(xí)冊(cè)答案