分析 先從解析式中得到對(duì)稱軸,然后分開(kāi)口向上和向下兩種情況判定函數(shù)值在何時(shí)取最大值,并根據(jù)最大值為4,即可求出對(duì)應(yīng)的實(shí)數(shù)a的值
解答 解:f(x)的對(duì)稱軸方程為x=-1,
(1)若a<0,則函數(shù)圖象開(kāi)口向下,函數(shù)在[-1,2]遞減,
當(dāng)x=-1時(shí),函數(shù)取得最大值4,即f(-1)=a-2a+1=4,解得a=-3.
(2)若a>0,函數(shù)圖象開(kāi)口向上,函數(shù)在[-1,2]遞增,
當(dāng)x=2時(shí),函數(shù)取得最大值4,即f(2)=4a+4a+1=4,解得a=$\frac{3}{8}$.
綜上可知,a=-3 或 a=$\frac{3}{8}$.
點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象和性質(zhì),體現(xiàn)了分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{4},\frac{1}{2}$ | B. | $\sqrt{2},\frac{{\sqrt{2}}}{2}$ | C. | $\sqrt{2},\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2},\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com